- 1 We have derived that $dG = dGo + RT \ln(Q)$. What is the value of Q when everything is in standard states?
 - A Q = infinity
 - B Q = 1
 - C Q = 0
 - D More information needed
- 2 We have derived that $dG = dGo + RT \ln(Q)$. What is the value of dG when everything is in standard states?
 - $A \quad dG = 0$
 - B dG = 1
 - $C \quad dG = dGo$
 - D More information needed
- 3 We have derived that $dG = dGo + RT \ln(Q)$. What is the value of dG when Q = K?
 - $A \quad dG = 0$
 - $B \quad dG = 1$
 - $C \quad dG = dGo$
 - D More information needed
- 4 We have derived that $dG = dGo + RT \ln(Q)$. What is the value of dGo when Q = K?
 - A dGo = 0
 - B dGo = 1
 - C = dGo = -RT ln(K)
 - D More information is needed
- 5 We have derived that dG = dGo + RT ln(Q). What is the value of dGo when Q does not equal K?
 - A dGo = 0
 - B dGo = 1
 - C = dGo = -RT ln(K)
 - D More information is needed
- 6 We have derived that dGo = dHo TdSo = RT ln(K). How does ln(K) depend on T?
 - A In(K) is proportional to T
 - B In(K) is independent of T
 - C In(K) is proportional to 1/T
 - D None of the above

- 7 We have derived that dGo = dHo TdSo = RT ln(K). What best describes the graph of ln(K) versus 1/T?
 - A An hyperbola
 - B A parabola
 - C A straight line
 - D None of the above
- 8 We have derived that dGo = dHo TdSo = RT ln(K). What is the slope of the graph of ln(K) versus 1/T?
 - A 1
 - B dHo/R
 - C -dHo/R
 - D 0 (horizontal line)
- 9 We have derived that dGo = dHo TdSo = RT ln(K). What is the value of ln(K) at infinite temperature.
 - A 0
 - B dSo/R
 - C infinite
 - D None of the above
- 10 Why does ln(K) at infinite temperature *not* depend on dHo?
 - A Reactions result in zero entropy in the surroundings when T = infinity.
 - B Reactions result in zero entropy change in the surroundings when T = infinity.
 - C Reactions result in zero entropy in the system when T = infinity.
 - D Reactions result in zero entropy change in the system when T = infinity.