- 1 N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I) What type of reaction is this?
 - A hydrolysis
 - B acid-base
 - C redox
 - D precipitation
- 2 The sign of the entropy change for the reaction N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I) is ...
 - A positive
 - B negative
 - C 0
 - D can't predict need more information
- 3 N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I) In this redox reaction, ...
 - A Both N2H4 and H2O2 are reduced
 - B H2O2 is reduced, and N2H4 is oxidized
 - C Both N2H4 and H2O2 are oxidized
 - D N2H4 is reduced, and H2O2 is oxidized
- 4 Calculate DHo for the reaction N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I)

N,H ₄ (I) H(O(I)	51 -108	8* 48 121 110	40,* 149 -120				
				N;(g)	0	192	0
				H(O()	-286	70	-237

- A -149 kJ
- B -819 kJ
- C +819 kJ
- D -423 kJ

Thermodynamic calculations

5 Calculate DSo for the reaction N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I)

compound	AH47 Millionel	5° 28	AG,*
N,H.(I)	61	121	149
H(O/()	-188	110	-120
N;(g)	0	192	0
H-00	-286	70	-237

- A +493 J/K
- B -493 J/K
- C +131 J/K
- D +31 J/K
- 6 Calculate DGo for the reaction:

N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I)

N,H ₄ (I) H(O,I)	51 -108	8* #X 121 110	149 -120				
				N;(g)	0	192	0
				H;O()	-286	70	-237

- A -208 kJ
- B -266 kJ
- C -857 kJ D +266 kJ
- 7 Using the values we just calculated for DHo and DSo, calculate the value of DGo at 298 K for the reaction:

N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I)

- A +857 kJ
- B -857 kJ
- C -858 kJ
- D -1657 kJ
- 8 N2H4(I) + 2H2O2(I) --> N2(g) + 4H2O(I) has free energy change -857 kJ at 300 K. At 600 K, the reaction will ...
 - A be less spontaneous
 - B be more spontaneous
 - C have the same spontaneity

4/3/2009 3:13:14 PM

- The free energy of formation of water is -237 kJ at 298 K. At very high temperature, water 9 ...
 - A will decompose.

 - B will not decompose.C More information needed.