- 1 Here is a representation of four quanta of energy, q, distributed among three molecules: q|q|qq. How many ways can the four units of energy end up with one in first molecule, one in the second molecule, and two in the third molecule?
 - A 1 B q = 4C q! = 4! = 4*3*2*1 = 24
- 2 Here is a representation of four units of energy, q, distributed among m = 3 molecules: q|q|qq. How many different ways can the two partitions, |, be assigned to achieve the arrangement q|q|qq?
 - A 1 B (m - 1)! = (3 - 1)! = 2*1 = 2
 - C $m! = 3! = 3^*2^*1 = 6$
- 3 Here is a representation of four units of energy, q, distributed among m = 3 molecules: q|q|qq. How many different arrangements of the six objects in the diagram are there, ignoring that q and | are different?
 - A m + q = 7B $(m - 1)^*q = 6$ C $(q + m - 1)! = 6! = 6^*5^*4^*3^*2^*1 = 720$
- 4 How many ways (distinct or not) can the arrangement q|q|qq of four quanta among three molecules be made?
 - A q! * m! = 2! * 2! = 4
 - B q! * (m 1)! = 4! * (3 1)! = 24 * 2 = 48
 - C (q + m)! = (4 + 3)! = 7! = 5040
- 5 Two arrangements of q = 4 quanta among m = 3 molecules are q|q|qq and qqq||q. Which relation is true about the number of *unique* ways, We(q, m), that q quanta can be distributed among m molecules?
 - A We(q, m) = q! * m!
 - B We(q, m) = (q + m 1)!
 - C We(q, m) * q! * (m 1)! = (q + m 1)!
- 6 We(q, m) = (q + m 1)!/(q! * (m 1)!) is the number of unique ways that q quanta can be distributed among m molecules. How many ways can two quanta be distributed among three molecules?
 - A 3 B 6
 - C 9

4/3/2009 3:06:24 PM

Counting energy dispersal

- 7 We(q, m) = (q + m 1)!/(q! * (m 1)!) is the number of unique ways that q quanta can be distributed among m molecules. How many ways can three quanta be distributed among three molecules?
 - A 10
 - B 16
 - C 20