
Spontaneity: Second law of thermodynamics
CH102 General Chemistry, Summer 1 2012, Boston University

“… three or four forces and, as capstone, a minimalist cosmic constitution to legislate their use: 
Article I, the laws of conservation and symmetry; Article II, the laws of blind chance and dumb luck.

There, I think, is the surprise and irony of the universe and also its incomparable beauty:
 that all complexity is an illusion; that nature's rich texture emerges from such a small bag of tricks;

 that things happen simply because they can happen and because they are statistically most likely to happen.”
Michael Munowitz, "Principles of Chemistry," W. W. Norton, 2000

[ Related material is Mahaffy et al., sections 17.2–17.5 ]

à Things happen because of dispersal of energy 

When all is said and done, the first law of thermodynamics allows us to track the energy flow. For example, we know that, 
in an expansion of a gas, the gas is doing work on the surroundings (w < 0), and so a corresponding amount of energy must 
be supplied.

If the gas expands isothermally (DU = 0), then the energy must come from the surroundings in the form of heat flow into 
the gas (q > 0). The temperature of the gas does not change because all of the heat energy drawn into the gas goes right 

back out of the gas in the form of work done on the surroundings.  

If instead the gas expands adiabatically (q = 0), then the energy must come from the gas itself in the form of lowered 

kinetic energy of the gas particles (DU < 0). The temperature of the gas drops in proportion to the energy lost by the gas in 
the form of work done on the surroundings.

In either case, something peculiar happens: The spontaneous expansion of the gas is able either to cool the surroundings 
(isothermal case) or to cool itself (adiabatic case). Now, isn't it remarkable that a gas is able to spontaneously draw heat 
from the surroundings or from the motion of its particle, to use it to do work? 

I certainly think so, for the following reason: This means that the essentially disorganized motion of the particles of the 
surroundings (isothermal case) or of the gas itself (adiabatic case) is being channeled into the coordinated motion of the gas 
piston to do work on the surroundings. Imagine trying to herd cats!

Why is it that this happens? Evidently it is the natural tendency of a gas to expand, to fill the volume available to it 
uniformly. But what is the source of this natural tendency? The answer is one of the most fundamental aspects of the 
physical world:

Spontaneity in any aspect of the universe always is accounted for by one thing, and one thing only: energy dispersal 
mediated by blind chance. 

In the case of expansion of a gas, the spontaneity is due to the simple fact that there are more ways (greater chance) in 
which the gas can exist in a large volume than in a small volume. This means the energy of the gas is more dispersed in a 
large volume than in a small volume. We will call this dispersal a measure of the entropy of the gas and we will see than 
that 

In any spontaneous process there is a net dispersal of energy, that is, the entropy of the universe increases. 
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Entropy and the second law

The quantitative definition of entropy proceeds from the interpretation that it is a measure of energy dispersal. For example, 
energy is more dispersed—there are more ways of storing the energy—when a given amount of gas at a given temperature 
occupies a larger volume than a smaller volume. 

For example, when we neaten up our rooms, by putting things in their places, we are taking advantage of the fact that, for a 
given gravitational potential energy (say), there are fewer ways things can be where they belong (say, socks paired and 
collected in the sock drawer) then elsewhere (say, one sock of a pair behind the door and the other in the drier). Cleaning 
up is equivalent to making energy less dispersed, to lowering the entropy. We all know that (absent a sorcerer's apprentice) 
rooms do not clean themselves; cleaning a room is a non-spontaneous process. We all also know, however, that rooms 
certainly seem to get into disarray by themselves; increased dispersal of energy is evidently a spontaneous process.

There are two approaches to quantifying the energy dispersal associated with spontaneous processes. The first is to analyze 
the change in the number of equal energy arrangements in which the system can exist in going from the initial to the final 
state; this is known as the microscopic, statistical approach. The second is based on the idea that when a system is heated it 
becomes more disorganized, due to the increase in thermal motion, and so the increased dispersal of energy should be 
proportional to heat flow; this is known as the macroscopic, thermodynamic approach. 

The results of the two approaches are the same. We will begin with the microscopic, statistical approach. We will then see 
how to relate this approach to the macroscopic, thermodynamic approach.

Spontaneous change proceeds in the direction that increases the number of distinguishable arrangements. We consider two 
different kinds of arrangements. The first is the ways molecules can be distributed in space. The second is the ways energy 
can be distributed among molecules.

à Molecules distributed in space

The number of distinguishable ways to distribute n molecules of one type and m molecules of another type is

Wmoleculesn, m = n +m!
n !m!

.

For example, the number of ways of arranging 3 ink molecules and 3 water molecules is

3 + 3!
3! 3 !

=
6μ5μ4μ3 !

3! 3μ2μ1 =
6μ5μ4

3μ2μ1
= 2μ5μ2 = 20.

Here is a way to derive Wmoleculesn, m. The number of arrangements of n +m molecules, ignoring whether the 
arrangements are distinguishable is n +m !, since the first molecule can be in any of n +m places, the second can be in 
any of the remaining n +m - 1 places, and so on to the last molecule which can be in the single remaining space. Now, the 
number of arrangements n +m ! must be the product of (1) the number of unique arrangements, (2) the number of ways n ! 
that a particular arrangement of the n molecules can arise, and (3) the number of ways m! that a particular arrangement of 
the m molecules can arise:

Wmoleculesn, mμn !μm != n +m !.
Solving this expression for Wmoleculesn, m, we get the expression above. Note that in this expression n !μm ! is the number 
of ways that a particular one of the Wmoleculesn, m distinguishable arrangements can occur.

Questions

How many distinguishable ways can n different objects be arranged: n, n2, nn or n!? 
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Answer: n !

How many indistinguishable ways can w identical objects be arranged: w, w2, wn or w!? 

Answer: w!

How many ways can w different objects and i different objects (a total of w + i different objects) be arranged: 
w + i, w + i2, w + iw+i, or w + i !?
Answer: w + i!
What is true about the number, Wpw, i, of distinguishable ways can w identical objects on one kind and i 

identical objects of another kind (a total of w + i different objects) be arranged: Wpw, i w! i ! = w + i!, 
Wpw, i =w! i !, or Wpw, i = w + i?

Answer: Wpw, i w! i ! = w + i !

How many distinguishable ways can w water molecules and i ink molecules be arranged: w! i !, w + i !  w! i !, 
w + i!, or none of the these?

Answer: w + i!  w! i !
How many distinguishable ways can 2 water molecules and 2 ink molecules be arranged: 4, 6, 24, or none of 
these?

Answer: 6

How many distinguishable ways can 3 water molecules and 2 ink molecules be arranged: 10, 12, 120, or none of 
these?

Answer: 10

How many distinguishable ways can 4 water molecules and 2 ink molecules be arranged: 15, 48, 720, or none of 
these?

Answer: 15

How many distinguishable ways can 5 water molecules and 2 ink molecules be arranged: 21, 240, 5040, or none 
of these?

Answer: 21

How many distinguishable ways can 3 ink molecules be arranged in the top two layers of a column of water 
three molecules wide: 20, 36, 720, or none of these?

Answer: 20

à  Understanding spontaneity in terms of increased spatial arrangements

Here are some examples showing how spontaneous changes we are familiar with trace to an increase in the number of 
arrangements of particles. To analyze the examples, we use the generalized counting expression,

W =
i + j + k !

i ! j ! k !

to get the number of unique ways i objects of one kind, j objects of another kind, and k objects of a third kind can be 

arranged. If there are only two different kinds of objects, this expression reduces to
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W =
i + j !

i ! j!
.

If there are more than three different kinds of objects, the expression can be extended by adding the additional terms in the 
numerator and additional factorials in the denominator.

A gas evenly fills its container

Here is a model of j = 3 particles confined in successively more possible positions. The maximum number of arrangements 

corresponds the particles spread out over the greatest number of possible positions.

W =
 j + { !

j! { ! =
3 + 0!
3! 0 !

= 1.

W =
 j + { !

j! { ! =
3 + 2!
3! 2 !

= 10.

W =
 j + { !

j! { ! =
3 + 6!
3! 6 !

= 84.

Two gases evenly mix

Here is a model of 4 particles of one kind (light circles) and 4 particles of another kind (dark circles) confined in a lattice of 
16 possible positions. The lattice is separated into halves by a fixed membrane that is permeable to both kinds of particles. 
The maximum number of arrangements corresponds to each kind of particle evenly spread out over the two halves of the 
whole lattice.

In this arrangement, the particles are segregated in the different sides of the container.

W =Wleft Wright =
4 + 4!
4! 4 !

4 + 4 !
4 ! 4 !

= 70μ70 = 4900.

In this arrangement, the one particle of each type has moved to the other side of the container, and the result is a large 
increase in the number of possible arrangements,

W =Wleft Wright =
1 + 3 + 4 !
1 ! 3! 4 !

3 + 1 + 4!
3 ! 1 ! 4!

= 280μ280 = 78 400.
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In this arrangement, the particles of each type are evenly distributed on both sides if the container, and the result is the 
maximum number of possible arrangements,

W =Wleft Wright =
2 + 2 + 4 !
2 ! 2! 4 !

2 + 2 + 4!
2 ! 2 ! 4!

= 420μ420 = 176 400.

Two regions of a gas come to a common pressure

Here is a model of 2 particles confined in one region and 6 particles of confined in another region. The two regions are 
separated by an impermeable barrier that is free to move, thereby changing the volume (the number possible positions) of 
the two regions. The maximum number of arrangements corresponds to the same pressure (number of particles per possible 
positions) in each region.

In this initial configuration 

the number of arrangements is

W =Wleft Wright =
2 + 6!
2! 6 !

6 + 2 !
6 ! 2 !

= 28μ28 = 784,

and the pressure on the left is too low,

Dp = pleft - pright = 2 8 R T - 6 8 R T = -1 2 R T = -0.50 R T .

Moving the barrier left decreases the volume on the left and increases the volume on the right.

This results in an increase in the number of arrangements,

W =Wleft Wright =
2 + 4!
2! 4 !

6 + 4 !
6 ! 4 !

= 15μ210 = 3150,

and a reduction in the pressure difference,

Dp = pleft - pright = 2 6 R T - 6 10 R T = -4 15 R T = -0.27 R T .

Further decreasing the volume on the left side and increasing the volume on the right side,

results in an additional increase in the number of arrangements,
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W =Wleft Wright =
2 + 2!
2! 2 !

6 + 6 !
6 ! 6 !

= 6μ924 = 5544,

and now the pressure is the same on both sides,

Dp = pleft - pright = 2 4 R T - 6 12 R T = 0.

Further decreasing the volume of the left side and increasing the volume of the right side,

results in a decrease in the number of arrangements,

W =Wleft Wright =
2 + 0!
2! 0 !

6 + 8 !
6 ! 8 !

= 1μ3003 = 3003,

and reappearance of a pressure difference,

Dp = pleft - pright = 2 2 R T - 6 14 R T = +4 7 R T = +0.57 R T .

à  Energy distributed among molecules

Let’s consider the total energy to consist of equal sized quanta of energy. Then, distributing energy among molecules 
amounts to dividing up the quanta into groups. 

For example, say we have q = 8 quanta distributed  among four molecules. A pictorial representation of one way of doing 

this is 

μ μ μ μ μ μ μ μ,

where the μ's are the quanta; this arrangement corresponds to two quanta in the first molecule, one quantum in the second 
molecule, four quanta in the third molecule, and one quantum in the last molecule. Another, different arrangement is

μ μ μ  μ μ μ μ μ,

corresponding to two quanta in the first molecule, one quantum in the second molecule, no quanta in the third molecule, 
and five quanta in the last molecule. As we will now learn how to determine, there are 163 additional different 
arrangements of 8 quanta distributed among four molecules.

These two examples show that enumeration of the number of different groupings amounts to counting the different possible 
placements of the dividers. To make the role of the placement of the dividers explicit, let’s call the number of dividers d, 
equal to one less than the number of molecules. d =m - 1. 

For the example of eight μ’s and three dividers, if we ignore whether an arrangement is distinguishable, then the total 
number of arrangements is the number of ways of assigning the eight μ's and the three dividers, that is, 8 + 3 != q + d!. 
Now, this total number of arrangements, q + d !, must be the product of 

(1) the number of unique arrangements, W , 
(2) the number of ways q! that a particular arrangement of the μ's can arise, and 

(3) the number of ways d ! that a particular arrangement of the d dividers can arise,

that is
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q + d !=W q! d !.

Solving this expression for W , we get 

W =
q + d !

q! d !
.

Note that in this expression q ! d ! is the number of ways that a particular one of the W  distinguishable arrangements can 

occur.

Now that we see how to count the ways of dividing up the q quanta with the d dividers, let’s shift attention from the 

number of dividers, d, to the number of molecules, m. We do this by replacing d with m - 1 to rewrite the number of 
arrangements as 

Wenergyq, m = q +m - 1 !
q ! m - 1 ! ,

the number of distinguishable ways to distribute q quanta of energy among m molecules is. 

With this expression we can verify that for 8 quanta distributed among four molecules, there are 165 different ways of 
dividing up the quanta,

Wenergyq, m =Wenergy8, 4 = 8 + 4 - 1 !
8 ! 4 - 1 ! =

11 μ 10 μ 9 μ 8 !

8 ! 3μ2 =
11 μ 10 μ 9

3μ2
=

11 μ 5 μ 3

3μ2
= 165

As another example, there are 6 different ways the number of ways of arranging 2 quanta and among three molecules,

2 + 2 !
2 ! 3 - 1 ! =

4μ3μ2!

2 ! 2μ1 =
4μ3

2
= 6,

and these six arrangements are

μ μ , μ μ , μ  μ, μ μ , μ μ, and  μ μ .

Questions

Here is a representation of four quanta of energy, q, distributed among three molecules: q q q q. How many 

ways can the four units of energy end up with one in first molecule, one in the second molecule, and two in the 
third molecule:1, q = 4, or q = 4 = 4μ3μ2μ1 = 24.

Answer: 24

Here is a representation of four units of energy, q, distributed among three molecules: q q q q. How many 

different ways can the two partitions, , be assigned to achieve the arrangement q q q q: 1, 

m - 1 = 3 - 1 = 2μ1 = 2, or m = 3 = 3μ2μ2μ1 = 6?

Answer: 2

Here is a representation of four units of energy, q, distributed among three molecules: q q q q. How many 

different arrangements of the six objects in the diagram are there, ignoring that q and  are different: m + q = 7, 

m - 1 q = 2μ3 = 6, or q +m - 1! = 6 ! = 6μ5μ4μ3μ2μ1 = 720?

Answer: 720

How many ways can the arrangement q q q q of four quanta among three molecules be made: 
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q !m ! = 2 !μ2 ! = 4., q ! m - 1! = 4 ! 3 - 1 ! = 24μ2 = 48, or q +m ! = 4 + 3 ! = 7 ! = 5040?

Answer: 48

Two arrangements of 4 quanta among three molecules are q q q q and q q q  q. Which relation is true about the 

number of unique ways, Weq, m, that four quanta can be distributed among three molecules: Weq, m = q !m !, 
Weq, m = q +m - 1 !, or Weq, m q ! m - 1! = q +m - 1!?
Answer: Weq, m q ! m - 1! = q +m - 1 !
Weq, m = q +m - 1 ! q! m - 1!  is the number of unique ways that q quanta can be distributed among m 

molecules. How many ways can two quanta be distributed among three molecules: 3, 6, or 9?

Answer: 6

Weq, m = q +m - 1 ! q! m - 1!  is the number of unique ways that q quanta can be distributed among m 

molecules. How many ways can three quanta be distributed among three molecules: 10, 16, or 20?

Answer: 10
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à ACS Chemistry, 8.14 Consider This: Temperature and entropy change

Since entropy is proportional to the natural logarithm of the number of distinguishable configurations, the entropy change 
associated with a change in the number of configurations depends on the ratio of the number of configurations, as

DS = Safter - Sbefore = kB lnWafter - kB lnWbefore = kB lnWafter Wbefore
Let's apply this expression to the entropy change when one quantum of energy is added to a system consisting of m 
molecules which contain q quanta of energy. We have

Wafter

Wbefore

=
Wenergyq + 1, m

Wenergyq, m

Using the counting formula

Wenergyq, m = q +m - 1 !
q ! m - 1 ! .

we can simplify the ratio to

Wenergyq + 1, m
Wenergyq, m

=
q +m !

q + 1! m - 1 ! 
q +m - 1!
q ! m - 1!

=
q! m - 1 ! q +m !

q + 1! m - 1 ! q +m - 1 !

=
q +m
q + 1 .

This ratio always greater than 1 (provided there are at least two molecules, m > 1). It is largest when the number of quanta 
is smallest, while when the number of quanta, q, becomes very large compared to the number of molecules, m, the ratio is 

nearly 1. This variation is shown in the figure, for the example of m = 4 molecules.

0 5 10 15 20
quanta

1

2

3

4

5

rati

Ratio Wenergyq+1, m Wenergyq, m for m = 4 molecules versus the number of quanta q originally present.

This means that the entropy change, proportional to the natural logarithm of the ratio Wenergyq + 1, mWenergyq, m, is 

greater the smaller the number of quanta originally present. We can interpret the number of quanta present as a measure of 
the temperature, and so this means the entropy change per unit of heat (quantum of energy) added is inversely proportional 
to the temperature. 

A more detailed analysis confirms this finding: Whenever there is a transfer of heat energy at temperature T , the entropy 
change is
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DS = heat T

Here is a macroscopic way of looking at this result. Adding heat to a system increases its energy content and this energy is 
more dispersed, because the added energy increases the motion of the particles of the system. The more heat we add, the 
greater this increase, and so we expect the increase in dispersal to be proportional to the heat added.

If a system is initially very cool, then its particles are not moving very much. If a given amount of heat is added to such a 
cool system, the relative increase in motion will be large compared to what it would be if the system were initially hotter 
and so its particles moving faster. (Sneezing in a crowded church is more disruptive than sneezing in a crowded subway). 
This means that the lower the temperature at which we add heat to the system, the larger the increase in energy dispersal; 
that is, that we expect the increase in energy dispersal to be inversely proportional to the temperature at which the heat is 
added.

Questions

Which expression is the value of We10 quanta, 4 molecules: 13μ12μ11 = 1716, 12μ11 = 132, 

13μ2μ11 = 286, or none of these?

Answer: 286

Which expression is the value of We9 quanta, 4 molecules: 11μ10 = 110, 10μ22 = 220, 13μ11 = 143, or none 

of these?

Answer: 220

We10 quanta, 4 molecules has 286 - 220 = 66 more arrangements than We9 quanta, 4 molecules. What is true 

for the increase going from We4 quanta, 4 molecules to We5 quanta, 4 molecules: greater than 66, 66, or less 

than 66?

Answer: Less than 66

The change We9, 4ØWe10, 4 is 66, and the change We4, 4ØWe5, 4 is 21. Without doing any numerical 
estimates, for which change to you expect the entropy increase to be greater: We9, 4ØWe10, 4 or 
We4, 4ØWe5, 4?
The general expression for the entropy change when a 4 molecule system with q quanta gains one quantum is: 
Weq + 1, 4 -Weq, 4, lnWeq + 1, 4 - lnWeq, 4, lnWeq + 1, 4 Weq, 4, or both of the previous two?

Answer: both of the previous two

Which is larger: We10, 4 We9, 4 or We5, 4 We4, 4?

à Entropy change when a gas expands at constant temperature

We know that an ideal gas spontaneously expands it is allowed to do so, for example, by reducing the pressure exerted on 
the gas. This in turn means that there is an increase in entropy when an ideal gas expands spontaneously. We now have the 
tools to calculate the entropy change for such a process, both in terms of the microscopic picture of changes in the number 
of arrangements W  and in terms of the macroscopic analysis of the heat that flows during the expansion. By comparing the 
microscopic and macroscopic calculations, we will see that the results are the same, and so will establish that the 
microscopic and macroscopic picture of entropy change are equivalent.

Macroscopic approach

Let’s begin with the macroscopic approach to entropy change, by calculating
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DS = q T

in terms of the heat, q, that flows when the gas expands at constant temperature (isothermally). 

The first step is to recall (1) that since the energy of an ideal gas is due entirely to the kinetic energy of its particles and, 
from the kinetic molecular theory, (2) that each mole of gas has energy

KE =
1

2
M urms

2 =
3

2
R T ,

and so that molar energy of an ideal gas depends only on it temperature. This in turn means that if we keep the temperature 
of the gas constant (isothermal) during its expansion, then from the first law

DU = 0 = q + w

and so q = -w. This means that we can determine q in terms of the work, w, done on the gas during the expansion.

To calculate the work, we need to carry out the expansion reversibly: in many small steps such the outside pressure, Pext, is 
always just slightly less than the gas pressure, P. At each step, the work by the gas is -w = F „h = P „V , since F = P A and 
„h = A „V . Starting at an initial volume V1 and ending at a final volume V2, letting each step along the way become 
infinitesimally small and then adding up all of the steps, the result is

q = -w = 
V1

V2

P „V = n R T 
V1

V2 1

V
„V = n R T lnV2 V1.

and so

DS = q T = n R lnV2 V1.

We see that the entropy change depends only the on volume change, and that for each doubling of volume

DS = n R ln2.
Calculate the entropy change when exactly 1 mol of ideal gas at 25 °C expands reversibly from exactly 13 L to 
exactly 14 L. Answer: 0.616169 J/K.

Calculate the entropy change when exactly 1 mol of ideal gas at 38 °C doubles in volume. Answer: 5.76315 J/K.

Microscopic approach

Let’s apply the microscopic approach to the doubling of the volume of a gas of N = n N0 particles. Initially the particles are 
confined to one half of the container, as illustrated for 6 particles below, where the heavy vertical line separates the two 
halves of the container.

At the end of the expansion, the particles are distributed over the total volume. A particular arrangement of 6 particles 
spread over the total volume is shown below.

To evaluate the entropy change

Spontaneity: Second law of thermodynamics, CH102 General Chemistry, Spring 2012, Boston University 11

Copyright © 2012 Dan Dill (dan@bu.edu). All rights reserved



DS = kB lnW2 W1
we need the ratio, W2 W1, of the  number of arrangements after and before the expansion to twice the volume. As a result 
of the expansion, each of the particle may be in twice as many positions, and therefore in the limit of a very large number 
of particles, say N , 

W2 W1 = 2 μ 2 μ 2 … 2 μ 2 = 2N

This means that

DS = kB ln2N  = N kB ln2 = 2 n N0 kB ln2 = R ln2

where the number of particles is expressed in terms of the numbers of moles as N = n N0. This is the same result as for the 
macroscopic analysis.

à Direction of heat flow

We know from experience that hot objects spontaneously cool and cold objects spontaneously warm to the temperature of 
their surroundings. We can analyze this process quantitatively using the first and second laws of thermodynamics, to see 
that this such heat flow from hot to cold is required by the second law of thermodynamics.

Macroscopic approach

To keep things simple, let's assume we have hot and cold objects of the same mass, m, and the same specific, cs. Let's 
further assume that the two objects are allowed to exchange energy with one another in the form of heat, but that they do 
not exchange energy with the surroundings.

Then, from the first law of thermodynamics, the energy gained (or lost) by one object is equal to the energy lost (or gained) 
by the other object. We can express this as

„qhot = -„qcold

From the definition of specific heat cs, we can write

„qhot =m cs „Thot,

„qcold =m cs „Tcold.

Since the mass and specific heat are the same for the two objects, these first law relations mean that the change in 
temperature of the hot body and the cold body are the same magnitude but opposite in sign,

„Thot = -„Tcold;

That is, on object becomes hotter and the other becomes correspondingly colder. There are two ways this equality can hold. 
Either the hot object warms up and the cold object cools down,

„Thot = Thotter - Thot > 0,

„Tcold = Tcolder - Tcold < 0;

or the hot object cools down and the warm object warms up,

„Thot = Tcolder - Thot < 0,
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„Tcold = Thotter - Tcold > 0;

In this latter case, the cooling of the hot body and the warming of the cold body will continue until a common temperature, 
T = Tcolder = Thotter, is reached,

„Thot = T - Thot < 0,

„Tcold = T - Tcold > 0;

We can use the second law of thermodynamics to show that only this second case is possible. The entropy change of the 
hot and cold bodies is

„Shot =
„qhot

Thot

„Scold =
„qcold

Tcold

and so the total entropy change is

„S = „Shot + „Scold =
„qhot

Thot

+
„qcold

Tcold

=
„qhot

Thot

-
„qcold

Tcold

= „qhot

1

Thot

-
1

Tcold

Now, since Tcold is less than Thot, 1 Tcold is greater than 1 Thot, and so the difference 1 Thot - 1 Tcold is negative. This 
means that if „qhot > 0, that is, if heat flows into the hot object from the cold object, then

„S < 0.

But this is impossible according to the second law. The only way out of this problem is for „qhot to be negative, that is, for 

heat to flow from hot objects to cold objects. 

Microscopic approach

At the microscopic level, two objects of the same mass and heat capacity but one hot and one cold, corresponds to each 
object consisting of the same number of molecules but with their being more quanta of energy in the hot object than in the 
cold object. 

Transfer of a quantum from the hot object to the cold object corresponds to a decrease in their temperature difference, 
while transfer from the cold object to the hot object corresponds to an increase in their temperature difference. By 
analyzing the change in the number of arrangements of the quanta among the two blocks, we can account for the observed 
behavior that transfer from the hot to the cold object results in increased energy dispersal.

To keep things simple, let’s assume that each block consists of four molecules, that 6 quanta are in the hot block and 4 
quanta in the cold block. The number of arrangements of the combined system is

Whotq = 6, m = 3 Wcoldq = 4, m = 3.

If one quantum moves from the hot block to the cold block, the number of arrangements is

Whotq = 5, m = 3 Wcoldq = 5, m = 3.

If instead one quantum moves from the cold block to the hot block, the number of arrangements is
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Whotq = 7, m = 3 Wcoldq = 3, m = 3.

To see which transfer increases the energy dispersal, we need to compare the ratios of the final and initial number of 
arrangements. For heat transfer from the hold block to the cold block, the ratio is

hotØ cold :
Whotq = 5, m = 3 Wcoldq = 5, m = 3
Whotq = 6, m = 3 Wcoldq = 4, m = 3 = 21 20

Without using a calculator, use cancellation to verify this numerical value.

Because the ratio is greater than 1, the transfer hotØ cold increases the energy dispersal and so corresponds to a positive 
entropy change.

For heat transfer to the hot block from the cold block, the ratio is

hot≠ cold :
Whotq = 7, m = 3 Wcoldq = 3, m = 3
Whotq = 6, m = 3 Wcoldq = 4, m = 3 = 6 7

Again, without using a calculator, use cancellation to verify this numerical value.

Because the ratio is less than 1, the transfer hot≠ cold decreases the energy dispersal and so corresponds to a negative 
entropy change.

This is the microscopic basis for the fact that the spontaneous direction of heat transfer is from a hot object to a cold object.
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