

e cai	i get the nume	erical value o	of K _a by analy	U	d equilibrium.	
					Q	
	Initial	Ca	10 ⁻⁷	0	0	
	Change	- <i>x</i>	+x	+x		
	Equilibrium	$c_a - x$	$10^{-7} + x$	x	Ka	
	Approximate	$\approx c_a$	$\approx x$	x	K _a	
	ample, if $c_a = \frac{(10^{-\text{pH}})^2}{c_a} = \frac{(10^{-\text{pH}})^2}{c_a}$	•				

Lecture 16 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu				
Step 2: [H ₃ O ⁺] when "too little" base added					
After "too little" base is added there is present both some acid, HA, and its conjugate base, A^- . This means there are two possible ways the system can come to equilibrium,					
$\mathrm{HA}(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftharpoons \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{A}^-(aq), K = K_a$					
$A^{-}(aq) + H_2O(l) \rightleftharpoons HA(aq) + OH^{-}(aq), K = K_b = K_a$	/K _w				
Use the one that has the larger <i>K</i> !					
Say $K_a = 1.0 \times 10^{-5} \gg K_b = K_a/K_w = 10^{-14} / (1.0 \times 10^{-5}) = 1.0 \times 10^{-9}$, use					
$\mathrm{HA}(aq) + \mathrm{H}_2\mathrm{O}(l) \rightleftharpoons \mathrm{H}_3\mathrm{O}^+(aq) + \mathrm{A}^-(aq), K = K_a$					
BOSTON UNIVERSITY	12				

Lecture 16 CH131 Summer 1 2019	Copyright © 2019 Dan Dill dan@bu.edu
Practice with titration: Pure	weak acid
0.200 L of 0.100 M HA, $K_a = 1.0 \times 10^{-4}$ at 2	5 °C: $[H_30^+] = 3.2 \times 10^{-3}$
_	
BOSTON UNIVERSITY	23

