Challenge 4: Buffer

A buffer is constructed by dissolving in water at 25 °C 1.00 mol each of an acid, with $K_a = 1 \times 10^{-5}$, and its conjugate base in a total volume of 1.00 L.

What is the pH after 500. mL of 0.100 M HCl has been added to the original buffer solution? **Answer**: pH = 4.96

What is the pH after 500. mL of 0.100 M NaOH has been added to the original buffer solution? **Answer**: pH = 5.04

Add strong acid to buffer

```
1 L buffer, c_a = c_b = 1.00 M, K_a = 1 \times 10^{-5}, pH = 5.00 Add 500. mL of 0.100 M HCl HCl(aq) + \sqrt[4]{A}-(aq) \rightarrow \uparrow HA(aq) + Cl<sup>-</sup>(aq) HA \rightarrow 1.00 mol + 0.050 mol = 1.05 mol A<sup>-</sup> \rightarrow 1.00 mol - 0.050 mol = 0.95 mol
```

$$c_{\rm a}$$
 = 1.05 mol/1.50 L, $c_{\rm b}$ = 0.95 mol/1.50 L $c_{\rm a}/c_{\rm b}$ = 1.00 \rightarrow 1.05/0.95, pH \rightarrow 4.96 (tiny change!)

Add strong base to buffer

1 L buffer, $c_a = c_b = 1.00$ M, $K_a = 1 \times 10^{-5}$, pH = ...

5.00

Add 500. mL of 0.100 M NaOH

 \downarrow HA(aq) + OH⁻(aq) \rightarrow H₂O(I) + \uparrow A⁻(aq)

 $HA \rightarrow 1.00 \text{ mol} - 0.050 \text{ mol} = 0.95 \text{ mol}$

 $A^- \rightarrow 1.00 \text{ mol} + 0.050 \text{ mol} = 1.05 \text{ mol}$

$$c_{\rm a}$$
 = 0.95 mol/1.50 L, $c_{\rm b}$ = 1.05 mol/1.50 L $c_{\rm a}/c_{\rm b}$ = 1.00 \rightarrow 0.95/1.01, pH \rightarrow 5.04 (tiny change!)

