CH102 // Spring 2019 Thursday (7 minutes) Discussion Quiz #9

Name: _____

TF: _____

Time: _____

Cu(s) is oxidized to $Cu^{2+}(aq)$ by oxygen gas in a basic solution. *Hint: Remember to balance oxygens using water*.

 $[E^{\circ}_{red}(Cu^{2+}/Cu) = 0.34V, E^{\circ}_{red}(O_2/OH^{-}) = 0.40V].$

1. (3 points) Write the balanced net chemical reaction in basic media.

2 Cu (s) + 2 H₂O (l) + O₂ (g) \rightarrow 2 Cu²⁺ (aq) + 4 OH⁻ (aq)

2. (2 points) Calculate E°_{cell} $E^{\circ}_{cell} = 0.40 - 0.34 = 0.060V$

R or W

 $E^{\circ}_{\text{cell}} 0.060 \text{V}$

3. (4 points) Write the line notation for this reaction. Be sure to include phases.

 $Cu\left(s\right)\mid Cu^{2^{+}}\left(aq\right)\parallel \ O_{2}\left(g\right)\mid OH^{\text{-}}\left(aq\right)\mid Pt\left(s\right)$

- 4. (1 point) For each of the following, circle each relation that must be true.
 - a. If Q = 1, then ...

R or W						
<i>E</i> < 0	E = 0	E > 0	$\underline{E^{o}} = \underline{E}$	$E > E^{o}$	$E < E^{o}$	

Friday:

Fe(s) is oxidized to $Fe^{2+}(aq)$ by oxygen gas in a basic solution. *Hint: Remember to balance oxygens using water.*

 $[E^{\circ}_{red} (Fe^{2+}/Fe) = -0.44V, E^{\circ}_{red} (O_2/OH^{-}) = 0.40V].$

1. (3 points) Write the balanced net chemical reaction in basic media:

2 Fe (s) + 2 H₂O (l) + O₂ (g) → 2 Fe²⁺ (aq) + 4 OH⁻ (aq)

2. (2 points) Calculate $E^{\circ}_{\text{cell.}}$

 $E^{o}_{cell} = 0.40 - (-0.44) = 0.84V$ R or W

 $E^{\circ}_{cell} 0.84 V = V$

3. (4 points) Write the line notation for this reaction. Be sure to include phases.

 $Fe(s) | Fe^{2+} (aq) \parallel O_2(g) | OH^{-} (aq) | Pt(s)$

- 4. (1 point) For each of the following, circle each relation that must be true.
 - b. If Q = 1, then **R or W** ...

E < 0 E = 0 E > 0 $\underline{E^{o} = E}$ $E > E^{o}$ $E < E^{o}$