Key Thursday

1. (2 points) An equal volume of 0.0010 M solution of C⁻ (conjugate base of HC) is mixed with the solution of the strong acid and the final pH is 7.0. What is the pH of a 0.002 M solution of HC at 25°C?

Based on the information we can conclude that C⁻ is a strong Base that reacts 100% that means it's conjugate acid so week it is weaker than water hence it will not change pH of water.

pH=7 2 points R or W

2. (2 points) At 25° C an aqueous solution of an acid HA has pH = 3. Circle all of the following that must be true.

The acid is a strong acid.	The acid is a weak acid.	The conjugate base is strong.
$\underline{K_{a}} > \underline{K_{w}}$	$K_{ m a}pprox K_{ m w}$	$K_{ m a} < K_{ m w}$
$[\underline{\mathbf{H}}_{3}\mathbf{O}^{+}] > [\mathbf{O}\mathbf{H}^{-}]$	$[\mathrm{H_3O^+}]\approx [\mathrm{OH^-}]$	$[H_3O^+] < [OH^-]$
[HA] > [A]	$[\mathrm{HA}] \approx [\mathrm{A}^-]$	$[\mathrm{HA}] < [\mathrm{A}^{-}]$
$[HA] > [H_3O^+]$	$[\mathrm{HA}]\approx [\mathrm{H}_3\mathrm{O}^+]$	$[\mathrm{HA}] < [\mathrm{H}_3\mathrm{O}^+]$

3. (4 points) The solution of 0.20M NaD has a pH of 10.3. What is the K for this equilibrium reaction?

$$D_{(aq)} + H_2O_{(l)} \rightleftharpoons HD_{(aq)} + OH_{(aq)};$$

$$pOH = 14-pH=3.7$$

[OH⁻] =10^{-pOH}=10^{-3.7}=1.99x10⁻⁴; 2 x10⁻⁴
$$K = \frac{[OH^{-}][HD]}{[D^{-}]} = \frac{1.995 \times 10^{-4} \times 1.995 \times 10^{-4}}{0.20} = 1.99x10^{-7} = 2x10^{-7}$$

4. (2 points) Calculate the pH of a solution that is made by dissolving 0.8 moles of barium hydroxide in 400 mL of water at 25°C.

[Ba(OH)₂]=0.8mol/0.4L=2M [OH⁻]=4M pOH= -0.6 pH=14.6 Key Friday :

1. (2 points) An equal volume of 0.0020 M solution of A⁻ (conjugate base of HA) is mixed with the solution of the strong acid and the final pH is 7.0. What is the pH of a 0.002 M solution of HA at 25°C?

Based on the information we can conclude that C⁻ is a strong Base that reacts 100% that means it's conjugate acid so week it is weaker than water hence it will not change pH of water.

pH=7

2. (2 points) At 25° C an aqueous solution of an acid HA has pH = 4. Circle all of the following that must be true.

The acid is a strong acid.	The acid is a weak acid.	The conjugate base is strong.
$\underline{K_{a}} > \underline{K_{w}}$	$K_{ m a}pprox K_{ m w}$	$K_{ m a} < K_{ m w}$
$[\underline{\mathbf{H}}_{\underline{3}}\mathbf{O}^+] > [\mathbf{O}\mathbf{H}^-]$	$[\mathrm{H_{3}O^{+}]}\approx[\mathrm{OH^{-}}]$	$[H_3O^+] < [OH^-]$
$[HA] > [A^-]$	$[\mathrm{HA}] \approx [\mathrm{A}^-]$	$[\mathrm{HA}] < [\mathrm{A}^-]$
$[HA] > [H_3O^+]$	$[\mathrm{HA}]\approx [\mathrm{H}_3\mathrm{O}^+]$	$[HA] < [H_3O^+]$

3. (4 points) The solution of 0.20M NaD has a pH of 10.52. What is the K for this equilibrium reaction?

$$D^{-}(aq) + H_2O_{(l)} \rightleftharpoons HD_{(aq)} + OH^{-}(aq);$$

pOH = 14 - pH = 3.48

$$[OH^{-}] = 10^{-pOH} = 10^{-3.48} = 3.31 \times 10^{-4} \text{ or } 3.3 \times 10^{-4}$$
$$K = \frac{[OH^{-}][HD]}{[D^{-}]} = \frac{3.31 \times 10^{-4} \times 3.31 \times 10^{-4}}{0.20} = 5.48 \times 10^{-7} = 5.5 \times 10^{-7}$$

4. (2 points) Calculate the pH of a solution that is made by dissolving 0.4 moles of barium hydroxide in 500 mL of water at 25°C.
[Ba(OH)₂]=0.4mol/0.5L=0.8M
[OH⁻]=1.6M
pOH= -0.2
pH=14.2