Useful Information: $N_A = 6.022140857 \times 10^{23}$ /mol, R = 8.314 J/(mol K) = 0.08206 L atm/(mol K), 1 J = 1 kg m²/s², 1 L = (0.1 m)³, 1 atm = 1.01325 bar, 1 bar = 10⁵ Pa, 1 Pa = 1 kg/(m s²), $u_{rms} = \sqrt{3RT/M} = u_{mp}\sqrt{3/2}$, $[P + a(n/V)^2](V - nb) = nRT$

1. (4 points) The chemical reaction $2 A(g) + 3 B(g) \rightleftharpoons C(g)$ is carried out in a rigid 2.00 L container at 28.7 °C. At the start of the reaction, 3.00 atm of A and 6.00 atm of B are added to the container, for a total pressure of 9.00 atm. What will be the total pressure in the container at the end of the reaction?

A is a L.R. 2points

	2 A(g) +	3 B(g)	\rightleftharpoons C(g)	$P=n^*\frac{RT}{V}; P~n$
Initial:	3.00atm	6.00 atm		
Used:	-3.00	-4.50	+1.50	
End:	0atm	1.50atm	1.50atm	

P_{tottal}=3.00atm 2points

2. (3 points) At a certain temperature, T_1 , and pressure, P_1 , a 1.0 mole sample of gaseous acetaldehyde has a root mean square velocity of $u_{rms,1}$ inside a closed container. The pressure inside of the container is increased by a factor of four, $P_2 = 4 P_1$, at constant temperature. Circle the correct relationship between the initial rms velocity, $u_{rms,1}$, and the final rms velocity, $u_{rms,2}$.

$\underline{u}_{rms,1} = \underline{u}_{rms,2}$

3. (3 points) At a certain temperature, T_1 , and pressure, P_1 , a 2.0 mole sample of gaseous acetaldehyde has a root mean square velocity of $u_{rms,1}$ inside a closed container. The temperature inside of the container is increased by a factor of four, $T_2 = 4 T_1$. Circle the correct relationship between the initial rms velocity, $u_{rms,1}$, and the final rms velocity, $u_{rms,2}$.

 $\underline{u}_{\rm rms,1} = 1/2 \ \underline{u}_{\rm rms,2}$

Friday key

Useful Information: $N_A = 6.022140857 \times 10^{23}$ /mol, R = 8.314 J/(mol K) = 0.08206 L atm/(mol K), 1 J = 1 kg m²/s², 1 L = (0.1 m)³, 1 atm = 1.01325 bar, 1 bar = 10⁵ Pa, 1 Pa = 1 kg/(m s²), $u_{rms} = \sqrt{3RT/M} = u_{mp}\sqrt{3/2}$, $[P + a(n/V)^2](V - nb) = nRT$

1. (4 points) The chemical reaction $2 A(g) + 3 B(g) \rightleftharpoons C(g)$ is carried out in a rigid 2.00 L container at 28.7 °C. At the start of the reaction, 5.00 atm of A and 6.00 atm of B are added to the container, for a total pressure of 11.00 atm. What will be the total pressure in the container at the end of the reaction?

B is a L.R. 2points

	2 A(g) +	3 B(g)	⇒	C(g)	$P=n*\frac{RT}{V}; P~n$
Initial:	5.00atm	6.00 atm			
Used:	-4.00	-6		+2.00	
End:	1atm	0. atm		2.00atm	

Ptottal=3.00atm 2points

2. (3 points) At a certain temperature, T_1 , and pressure, P_1 , a 1.0 mole of gaseous acetaldehyde has a root mean square velocity of $u_{rms,1}$ inside a closed container. The pressure inside of the container is decreased by a factor of four, $P_1 = 4 P_2$, at constant temperature. Circle the correct relationship between the initial root mean square velocity, $u_{rms,1}$, and the final root mean square velocity, $u_{rms,2}$.

$\underline{u}_{\text{rms},1} = \underline{u}_{\text{rms},2}$

3. (3 points) At a certain temperature, T_1 , and pressure, P_1 , a 2.0 mole of gaseous acetaldehyde has a root mean square velocity of $u_{rms,1}$ inside a closed container. The temperature inside of the container is decreased by a factor of four, $T_1 = 4 T_2$. Circle the correct relationship between the initial root mean square velocity, $u_{rms,1}$, and the final root mean square velocity, $u_{rms,2}$.

 $\underline{u}_{\rm rms,1} = 2 \ \underline{u}_{\rm rms,2}$