Name ____

Section/ Day_____ (All work must be shown to receive credit.)

1. (*lpoint*) Calculate the number of distinguishable arrangements of 3 objects A and 2 objects B in 8 boxes.

$$W = \frac{(3+2+3)!}{3!2!3!} = 560 \quad Ipoint \ R \ or \ W$$

2. (2points) The figure below describes an osmosis process consisting of water (W) and methanol (M) molecules.

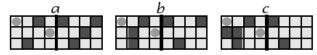
			w	w	w	
	W		W	W	М	
w		W	W	W	Μ	

- a) Calculate the number of distinguishable configurations for the system above ($W_{system} = W_{left} * W_{right}$). $W_{system} = W(3,6) * W(2,7,3) = \frac{(3+6)!}{3!6!} \cdot \frac{(2+7+3)!}{2!7!3!} = \frac{12!}{2!7!3!} \cdot \frac{9!}{3!6!} = 665,280$ <u>*Ipoint R or W*</u>
- b) The thick black line represents a semipermeable (permeable only to water) membrane. If the number of particles can pass through the membrane do so until there are an equal number on both sides, what will the new number of arrangements (W_{system}) be?

(2 water moved to the left)
$$W_{\text{system}} = W(5,4) * W(2,5,5) = \frac{(5+4)!}{5!4!} \frac{(2+5+5)!}{2!5!5!} = 2,095,632$$

Ipoint R or W

3. (2 points) The diagrams below show three different distributions of two particles of one kind (light circles) and six particles of another kind (dark squares). The membrane (vertical heavy line) is impermeable to all particles.



a. Find the number of distinguishable arrangements in box b.

$$W_{\text{total}=} \frac{(2+3+7)!}{2!3!7!} * \frac{(3+9)!}{3!9!} = 1,742,400 \quad \underline{1point \ R \ or \ W}$$

Which box has the maximum number of arrangements? What do you think is the reason for this box to have maximum number of arrangements? **Box b** same number of dark squares on both sides.

b. Of the choices below, which transformations are spontaneous? (Hint: Do you really need to do the calculations to answer this question?) $\underline{a \rightarrow b}$ <u>*lpoint R or W*</u>

4. (2 points) Consider the system of two identical four-atom solids that are in contact with each other, quanta of energy, and the other having eight quanta. one having four Calculate W_{system} for the system described:

$$W_{sysA} = W (4,4q) \cdot W (4,8q) = \frac{(4+4-1)!}{4!(4-1)!} \cdot \frac{(8+4-1)!}{8!(4-1)!} = 35*165 = 5775$$

a. Calculate the new W_{system} if two quanta of energy are transferred from the solid with four quanta to the solid with eight quanta. $(2 \cdot 4 \cdot 1) \cdot (10 \cdot 4 \cdot 1) \cdot$

$$W_{sysB} = W(4,2q) \cdot W(4,10q) = \frac{(2+4-1)!}{2!(4-1)!} \cdot \frac{(10+4-1)!}{10!(4-1)!} = 10*286 = 2860 \quad \underline{1point \ R \ or \ W}$$

b. Would the process of transferring of quanta of energy described in **part b** correspond to a spontaneous event or non-spontaneous event? Please give a brief explanation as to why or why not.

 $W_f / W_{in} = \frac{2860}{5775} < 1 \rightarrow \Delta S < 0$ not spontaneous. $W_{sysA} = W_{in} = 5775$ $W_{svsB} = W_{final} = 2860$

Process is not spontaneous because number of distinguishable arrangements decreases *1point R or W* no explanation no credit

5. (2points) Consider 3 "X" particles and 2 quanta of energy in 4 boxes (shown below). If one of the particles and one quantum of energy removed, calculate the change in entropy in J/K to one significant figure.

Not spontaneous

6. (1point) In one process : $a \rightarrow b$ $(W_b = 100 + W_a)$ In another process: $c \rightarrow d$ $(W_{\rm d} = 1000 + W_{\rm c})$

Which process has the greater entropy change (ΔS)? Keep in mind that Wa, Wb, Wc and Wdrepresent the number of distinguishable arrangements of a, b, c and d, respectively. Circle the correct answer:

More information needed *lpoint R or W* no explanation no credit **Prove your answer:** $\Delta S (a \rightarrow b) \sim \ln W_b / W_a = \ln ((100 + W_a) / W_a)$ $\Delta S (c \rightarrow d) \sim \ln W_d / W_c = \ln ((1000 + W_c) / W_d)$ In case of compare ΔS (a \rightarrow b) and ΔS (c \rightarrow d) we need to compare which fraction is lager W_b/Wa or W_d/Wc $W_b/W_a = (100 + W_a)/W_a = 100/W_a + 1$ $W_d / W_c = (1000 + W_c) / W_d = 1000 / W_d + 1$