CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions*

Student name	TA name	Section

Things you should know when you leave Discussion today:

- K_w<K_b<1;
- K_w<K_a<1;
- Significant figures for logarithms use Mahafy 2nd edition Appendix I, page I-4
- 1. 2 M of HCN has a $K_a = 5 \cdot 10^{-10}$. What is the pH at equilibrium and the percent reaction of the acid?

- 2. A 0.1M solution of HA has pH=3.0 at room temperature.
 - a. Based on the information given do you have a reaction of acid with water or base with water? Why?
 - b. Write the chemical equation for the acid-base reaction that occurs in this solution. What are the conjugate acid and base pairs in the solution?
 - c. Write the expression for equilibrium constant K: (does your expression represent K_a or K_b?)
 - d. Calculate equilibrium concentration of hydronium.
 - e. What percent of the acid reacted in solution? Is this a strong or weak acid?
 - f. Based on the information given will you expect the equilibrium constant to be: (choose one)

$$K_a <<1 \qquad or \qquad K_a >>1$$

- 3. A 0.1M solution of NaA has pH = 9.0 at room temperature.
 - a. Based on the information given do you have a reaction of acid with water or base with water? Why?
 - b. When salts that also contain an acid or base, like NaA, dissolve in water they ionize before they react. Write the reaction for NaA dissolving in water.
 - c. Write the chemical equation for the acid-base reaction that occurs in this solution. What are the conjugate acid and base pairs in the solution? *NEVER include spectator ions in equilibrium reactions.*
 - d. Write the expression for equilibrium constant K: (does your expression represent K_a or K_b?)
 - e. What percent of the base reacted in solution? Is this a strong or weak base?
 - f. Based on the information given will you expect the equilibrium constant to be: (choose one)

 $K_b << 1$ or $K_b >> 1$

- 4. Using the equilibrium constants in questions 2 and 3 derive the expression for equilibrium constant for autoionization of water.
 - a. Write the chemical equation for autoionization of water:
 - b. Write the expression for equilibrium constant K_w :
 - c. Use questions 2c and 3d to derive the expression for K_w using K_a and K_b :
- 5. A 0.1 M solution of an acid, HB, is found to have a pH of 3.52 (This suggests that it is an equilibrium pH).
 - a. Based on the information given do you have a reaction of acid with water or base with water? Why?

What is the chemical reaction?

Calculate equilibrium concentration of hydronium:

What is the equilibrium expression for K?

ICE table:

What was the percent reaction of the acid?

Calculate the value of Ka:

6. 0.5 M solution of NaD (D⁻ is a salt of the weak acid HD with the K_a = 2.5 x 10⁻¹⁰).
a. Based on the information given do you have a reaction of acid with water or base with water? Why?

Write the net chemical reaction:

What is the equilibrium expression? (Is that a K_a , K_b or neither?)

Calculate the value of K for the reaction of D⁻ and water? (*Hint: use the connection between* $K_{av}K_b$ and K_w)

ICE table:

Fill in the data from the ICE table into your equilibrium expression K_b:

pOH (at equilibrium) =

pH (at equilibrium) =

7. Equal volumes of a 0.10 M solution of a weak acid, HC, with $K_a = 1 \cdot 10^{-6}$, and a 0.20 M solution of NaOH are combined. What is the pH of the resulting solution? *Hint: what will react first? What will react completely? What is the limiting reagent?*

- 8. When 0.1mol of NaA is dissolved in 1L of pure water at room temperature, the pH is measured to be 7.0. Is HA a strong or weak acid?
 - a. Based on the information given will you expect the equilibrium constant to be: (choose one)

 $K_a << 1$ or $K_a >> 1$

- 9. Rank the acids HA, HB, HC, and HD from questions 5 through 8 in order of increasing acid strength.
- 10. You have a 1M solution of each of the salts below. Which of the salts will give the highest pH? Which of the salts will give the lowest pH?

NH₄CH₃COO (ammonium acetate), NH₄CN (ammonium cyanide), NH₄HC₂O₄ (ammonium oxalate).

	Ka	K _b
CH ₃ COOH	2·10 ⁻⁵	
HCN	6·10 ⁻¹⁰	
$H_2C_2O_4$	6·10 ⁻²	
NH ₃		2·10 ⁻⁵

11. 250. mL of an 0.8 M solution of NaAc (salt of the weak acid HAc with the K_a of 2.5x10⁻¹⁰) is added to 250. mL of water.
 What is the chemical reaction?

What will be the concentration of Ac after dilution?

What is the equilibrium expression of K (Is it a K_a or K_b?) for the reaction of NaAc⁻ and water:

Find the value of the K:

Based on the value of K_b is Ac⁻ a strong base or a weak base?

Based on the value of Ka is HAc a strong acid or a weak acid?

ICE table:

pOH (at equilibrium) =

pH (at equilibrium) =

Really Challenging problems to do at home:

- 12. One liter solution has 4.4 mol of HCl, 4.6mol of NaOH and 0.2 mol of HCN. What is the pH when the resulting solution reaches equilibrium? (K_a of HCN is 5×10⁻¹⁰) *Hint: What will react completely? What is the limiting reagent?*
- 13. If equal volumes of 4.4 M HCl, 4.6 M NaOH and 0.2 M HCN are mixed (K_a of HCN is 5×10⁻¹⁰), what is the pH when the resulting solution reaches equilibrium?
- 14. Determine the K_b of a base, at 25°C, if a 0.02 M aqueous solution of the base has a pH of 7.60 (This implies that it is an equilibrium pH). *Hint: compare pH of the solution with the pH of the water and decide if you can ignore the initial concentration of the H30*+.

In preparation for next week's discussion section:

- 1. You add HCl to a solution of equal moles of a weak acid and its conjugate base, and the number of moles of strong acid added is **smaller** than the number of moles of conjugate base initially present in the solution. Circle the correct answer(s) of the choices in the brackets.
 - a. The number of moles of A^{-} [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of [HCl / HA / A-] = 0 after neutralization reaction took place but before an equilibrium is established because [HCl / HA / A-] is the limiting reagent and will be used up completely.
 - d. When the strong acid has completely reacted with the solution, you have a [weak acid / weak base / strong acid / both weak acid and weak base] present.
- 2. You add an HCl to a solution of equal moles of a weak acid and its conjugate base and the number of moles of strong acid added is **equal to** the number of moles of conjugate base initially present in the solution. Circle the correct answer(s) of the choices in the brackets:
 - a. The number of moles of A⁻ [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of [HCl / HA / A-] = 0 after neutralization reaction took place but before an equilibrium is established because [HCl / HA / A-] is the limiting reagent and will be used up completely.
 - d. When the strong acid has completely reacted with the solution, you still have a [Weak acid / weak base / strong acid / both weak acid and weak base] present.
- 3. You add an HCl to a solution of equal moles of a weak acid and its conjugate base, and finally the number of moles of strong acid added is **greater than** the number of moles of conjugate base present in the solution initially. Circle the correct answer(s) of the choices in the brackets:
 - a. The number of moles of A^- [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of [HCl / HA / A⁻] = 0 after neutralization reaction took place but before an equilibrium is established because [HCl / HA / A⁻] is the limiting reagent and will be used up completely.
 - d. When the HCl has completely reacted with the solution, you still have a

[Weak acid / weak base / strong acid / strong base] present.

- 4. You add NaOH to a solution of equal moles of a weak acid and its conjugate base, and the number of moles of strong base added is **smaller** than the number of moles of conjugate base initially present in the solution. Circle the correct answer(s) of the choices in the brackets.
 - a. The number of moles of A^- [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of [OH- / HA / A-] = 0 after neutralization reaction took place but before an equilibrium is established because [OH- / HA / A-] is the limiting reagent and will be used up completely.
 - d. When NaOH has completely reacted with the solution, you still have a [Weak acid / weak base / strong acid / strong base / both weak acid and weak base] present.
- 5. You add a NaOH to a solution of equal moles of a weak acid and its conjugate base and the number of moles of strong base added is **equal to** the number of moles of conjugate base initially present in the solution. Circle the correct answer(s) of the choices in the brackets:
 - a. The number of moles of A^{-} [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of [OH / HA / A] = 0 after neutralization reaction took place but before an equilibrium is established because [OH / HA / A] is the limiting reagent and will be used up completely.
 - d. When NaOH has completely reacted with the solution, you still have a [weak acid / weak base / strong acid / strong base / both weak acid and weak base] present.
- 6. You add a NaOH to a solution of equal moles of a weak acid and its conjugate base, and finally the number of moles of strong base added is **greater than** the number of moles of conjugate base present in the solution initially. Circle the correct answer(s) of the choices in the brackets:
 - a. The number of moles of A^- [decreases / increases] from the initial amount.
 - b. The number of moles of HA [decreases / increases] from the initial amount.
 - c. The number of moles of $[OH^- / HA / A^-] = 0$ after neutralization reaction took place but before an equilibrium is established because $[OH^- / HA / A^-]$ is the limiting reagent and will be used up completely.
 - d. When the NaOH has completely reacted with the solution, you still have a [weak acid / weak base / strong acid / strong base] present.

Answers:

1. pH = 4.5; 0.00158% 2. a. acid; pH < 7b. $HA_{(aq)} + H_2O_{(1)} \rightleftharpoons A_{(aq)} + H_3O_{(aq)};$ acid base conj. base conj. acid $K_a = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm H}{\rm A}]}$ c. d. 0.001 M e. 1%; weak f. $K_a << 1$ 3. a. base; pH > 7b. $NaA_{(s)} \rightleftharpoons A^{-}_{(aq)} + Na^{+}_{(aq)}$ c. $A^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons HA_{(aq)} + OH^{-}_{(aq)};$ base acid conj. acid conj. base d. $K_b = \frac{[OH^-][HA]}{[A^-]}$ e. 0.01%; v weak f. $K_b << 1$ 4. a. $2H_2O_{(l)} \rightleftharpoons H_3O^+_{(aq)} + OH^-_{(aq)}$ b. $K_w = [OH^-][H_3O^+]$ c. $K_w = K_b K_a$ will equal $K_w = [OH^-][H_3O^+]$ 5. $HB_{(aq)} + H_2O_{(l)} \rightleftharpoons B^{-}_{(aq)} + H_3O^{+}_{(aq)}; K = \frac{[H_3O^+][B^-]}{[HB]}; 0.32\%; 9.12 \times 10^{-7}$ 6. $D^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons HD_{(aq)} + OH^{-}_{(aq)}; K = \frac{[OH^-][HD]}{[D^-]}; 4.0 \times 10^{-5}; pOH = 2.3; pH = 11.7$ 7. 12.7 10. highest—NH₄CN; lowest—NH₄HC₂O₄ 11. Ac⁻_(aq) + H₂O₍₁₎ \rightleftharpoons HAc_(aq) + OH⁻_(aq); [Ac⁻] = 0.4 M; $K_b = \frac{[OH^-][HD]}{[D^-]}$; $K_b = 4 \times 10^{-5}$; weak base; v weak acid; pOH = 2.25; pH = 11.7512.11.3 13. 11.1 14. $K_b = 6 \ge 10^{-12}$ In preparation for next week's discussion section: 1. 4. a. Decreases a. Increases b. Increases b. Decreases c. HCl, HCl

- c. OH, OH
- d. Strong base/ Both weak acid and weak base
- 5.
 - a. Increases
 - b. Decreases
 - c. OH, OH
 - d. Weak base
- 6.
 - a. Increases
 - b. Decreases
 - c. HA, HA
 - d. Weak base/ Strong base

- a. Decreases
- b. Increases
- c. HCl/A, HCl/A
- d. Weak acid
- 3.

2.

- a. Decreases
- b. Increases
- c. A, A
- d. Weak acid, strong acid

d. Both weak acid and weak base