	CH102 Spring 2019	9		
	Discussion #6			
Chapters 13 & 14				
Student name	TA name	Section		

1. What is true if a forward reaction is spontaneous? (Chose all that apply)

K \ll 1K \gg 1Q > 1Q < 1</th>Q < K</th>Q > KQ = K $\frac{Q}{K} > 1$ $\frac{Q}{K} = 1$ $\frac{Q}{K} < 1$ $\ln \frac{Q}{K} > 0$ $\ln \frac{Q}{K} < 0$ $\ln \frac{Q}{K} = 0$

- 2. If $K=10^{-13}$ and $Q=10^2$ what must be true? Circle all that apply.
 - a. The reaction will be spontaneous
 - b. The reaction will be nonspontaneous
 - c. The reaction is at equilibrium
 - d. Reactants are favored at equilibrium
 - e. Products are favored at equilibrium
- f. Reactants and products are equally favored at equilibrium
- g. Currently, the reaction has more products than reactants
- h. Currently, the reaction has more reactants than products
- 3. The following reaction is at equilibrium and has an equilibrium constant K: $A_{(g)} + B_{(g)} \rightleftharpoons 2C_{(g)}$ If we double the volume of the container, circle all that must be true immediately after the volume is changed below. *Hint: write an expression for K and Q and compare them.*
 - a. K increases
 - b. K decreases
 - c. K will stay the same
 - d. K will double

- e. *Q*increases
- f. Q decreases
- g. *Q* will stay the same
- 4. The following reaction is at equilibrium has an equilibrium constant K: $A_{(g)} \rightleftharpoons B_{(g)} + C_{(g)}$ If we double the volume of the container, circle all that must be true immediately after the volume is changed below.

a.	K increases	e.	Q will stay the same
b.	K decreases	f.	Q = 2K
	K will stay the same K will double	g.	$Q = \frac{K}{2}$

- 5. The following reaction is at equilibrium has an equilibrium constant K: $A_{(g)} \rightleftharpoons B_{(aq)} + C_{(g)}$ If we double the volume of the container, circle all that must be true immediately after the volume is changed below.
 - a. K increases
 - b. K decreases
 - c. K will stay the same
 - d. K will double
 - e. Q increases

- f. *Q* decreases
- g. *Q* will stay the same
- h. Q=2Ki. $Q=\frac{K}{2}$

- 6. If an equilibrium constant of the reaction decreases with increasing temperature what must be true.
 - a. Equilibrium constant always increases with temperature
 - b. Equilibrium constant never changes
 - c. Reaction is Endothermic
 - d. Reaction is Exothermic
 - e. Need more information

7. Consider the following reaction at equilibrium: $A_{(aq)} + 2B_{(aq)} \rightleftharpoons C_{(aq)}$ and $K = 3 \times 10^2$. For this reaction, $\Delta_r H^\circ = -40$. kJ/mol. In each of the following changes (a – d) circle the choice that indicates how the system will respond to return to equilibrium:

- a. Put a flame under the container: More products will form || More reactants will form || No change
- b. Adding 100 mL of water: More products will form || More reactants will form || No change
- c. The volume of the container is doubled: More products will form || More reactants will form || No change
- d. Remove 0.5 mol of A: More products will form || More reactants will form || No change
- 8. For the reaction $A_{(aq)} + 2B_{(aq)} \rightleftharpoons C_{(aq)}$, $K = 1 \times 10^{-13}$ at 25°C. 4 moles of A are added to 6 moles of C (at 25°C) in 1 L of water. Answer the following questions:
 - a. Based on the equilibrium constant, are the reactants or product favorable?
 - b. Calculate the Q for the initial conditions (Q_1).
 - c. Based on the initial conditions which of the following will form:

A B C

- 9. Consider the exothermic reaction: $2 \text{ NH}_{3(aq)} + H_2 \text{CO}_{3(aq)} \rightleftharpoons (\text{NH}_2)_2 \text{CO}_{(aq)} + 2 H_2 O_{(1)}$
 - a. 1.0 moles of NH_3 and 3.0 moles of $(NH_2)_2CO$ are added to 1.0 L of water. Calculate the initial value of Q before any reaction takes place.

- b. The equilibrium constant of this reaction (K) is $1 \cdot 10^3$. Which of the following must be true for the reaction mixture specified in part (a)? Circle all that apply.
 - The reaction will be spontaneous
 - The reaction will be nonspontaneous
 - The reaction is at equilibrium
 - Reactants will predominate at equilibrium

- Products will predominate at equilibrium
- Reactants and products are in equal proportion at equilibrium
- Before any reaction occurs, products predominate
- Before any reaction occurs, reactants predominate
- c. A reaction mixture is prepared with the following concentrations: 1.00 M NH₃, 0.10 M H₂CO₃, and 0.10M (NH₂)₂CO. Which of the following will increase the value of the ratio $\frac{Q_{\text{mixture}}}{K}$? Circle all that apply.
 - Add products
 - Add reactants
 - Heat the mixture
 - Cool the mixture

- The reaction is already at equilibrium. Do nothing
- Add water

10. At a certain temperature, the equilibrium constant for $2H_{2(g)} + O_{2(g)} \rightleftharpoons 2H_2O_{(g)}$ is K= 2500

- a. Calculate the numerical value of the equilibrium constant for $H_2O_{(g)} \rightleftharpoons H_{2(g)} + \frac{1}{2}O_{2(g)}$
- b. Calculate the numerical value of the equilibrium constant for $2H_2O_{(g)} \rightleftharpoons 2H_{2(g)} + O_{2(g)}$
- 11. Given the two reactions below, find the relationships between K_1 and K_2

 $A_{(aq)} + B_{(g)} \rightleftharpoons C_{(s)} + D_{(aq)}$ where the K for this reaction = K_1 $\frac{1}{3}A_{(aq)} + \frac{1}{3}B_{(g)} \rightleftharpoons \frac{1}{3}C_{(s)} + \frac{1}{3}D_{(aq)}$ where the K for this reaction = K_2

12. Given the two reactions below, find the relationships between K_1 and K_2

 $A_{(aq)} + B_{(g)} \rightleftharpoons C_{(s)} + D_{(aq)}$ where the K for this reaction = K₁ $C_{(s)} + D_{(aq)} \rightleftharpoons A_{(aq)} + B_{(g)}$ where the K for this reaction = K₂

13. Given the reactions below:

 $A_{(aq)} + B_{(g)} \rightleftharpoons C_{(aq)} + D_{(aq)}$ where the K for this reaction = K₁ $D_{(aq)} \rightleftharpoons \frac{1}{2} E_{(aq)} + F_{(g)}$ where the K for this reaction = K₂ $2C_{(aq)} \rightleftharpoons E_{(aq)}$ where the K for this reaction = K₃

What is K in terms of K₁, K₂, and K₃ for the following reactions?

- a. $A_{(aq)} + B_{(aq)} + D_{(aq)} \rightleftharpoons 3C_{(aq)} + 2F_{(g)}$
- b. $D_{(aq)} + E_{(aq)} \rightleftharpoons A_{(aq)} + B_{(aq)} + C_{(aq)}$

In preparation for next week discussion and lectures Mahaffy, 2e chapter 14:

- Measure of the acidity of a solution
 - \circ calculations of pH and [H₃O⁺]: pH=-log[H₃O⁺] [H₃O⁺]=10^{-pH}
- Measure of the basicity of a solution
 - calculations of pOH and $[OH^{-}]$: pOH = $-\log[OH^{-}]$ $[OH^{-}] = 10^{-pOH}$
- Water ionization constant: $K_w = [H_3O_{+(aq)}][OH_{-(aq)}]$
- For the reaction of acid and water, equilibrium constant is expressed as K_a
- For the reaction of base and water, equilibrium constant is expressed as K_b
- $K_w = K_a \cdot K_b$
- $pK_a = -logK_a$ $pK_b = -logK_b$ $pK_w = -logK_w$
- Weak acids and weak bases: $K_w << K_b << 1$ $K_w << K_a << 1$
- 1. What are the relative concentrations of H_3O^+ and OH^- in a neutral solution?
- 2. For each of the quantities below, circle the correct relationship (<, >, or =). If you need more information in order to answer, circle nothing.
 - a. What is true for an acidic solution?

 3. If a solution has a pH < 7 but has equal concentrations of H_3O^+ and OH^- what must be true? (circle one)

acidic basic neutral

- 4. The K_w for the autoionization of water is $1 \cdot 10^{-14}$ at 25°C and at 60°C, K_w is $1 \cdot 10^{-13}$. Circle all below that must be true:
 - a. Pure water is acidic at 60 °C
 - b. Autoionization is an endothermic process
 - c. Autoionization is an exothermic process
 - d. Pure water at 60° C has a pH = 7
 - e. Pure water at 60° C has a pH < 7
- 5. You have a solution with the pH of 7.3 choose what applies:
 - a. Solution is basic
 - b. Solution is acidic
 - c. I need more information
 - \Rightarrow If you need more information, what information do you need?
- 6. Calculate the pHs of the following aqueous solutions assuming that all the following are strong acids and bases At 25°C.
 - a. $0.50M H_2SO_4$

Reaction:

b. 0.75 M Ba(OH)₂

Reaction:

- 7. What is the concentration of a barium hydroxide solution if the pH is 11.48 at 25°C?
- 8. Write down an equilibrium reaction where equilibrium constant is K_a.
- 9. Write down an equilibrium reaction where equilibrium constant is K_b .

Unless told otherwise assume all reactions are run at room temperature (25°C). Do your calculations to the right number of significant figures. Review rules of significant figures for logarithms and antilogarithms from Packet 5.

- 10. A solution of 0.05 M of HOClO₃ in water has a pH=1.3 at room temperature.
 - a. Based on the information given do you have a reaction of an acid with water or base with water? Why?
 - b. Write the chemical equation for the acid-base reaction that occurs in this solution. What are the conjugate acid and base pairs in the solution?

- c. Write the expression for equilibrium constant K. (Does your expression represent K_a or K_b?)
- d. Using information given calculate equilibrium concentration of hydronium.
- e. What percent of the acid reacted in solution? Is this a strong or weak acid?
- f. Based on the information given will you expect the equilibrium constant to be: (choose one)

$K_a << 1$ or $K_a >> 1$

- 11. Calculate the pH of the following aqueous solutions assuming that all the following are strong acids and bases. *Remember* log(1) = 0; log(10) = 1
 - a. 3.2M HCl
 - b. 1.5M HCl
 - c. 0.0024M HCl
 - d. 0.039M HCl
 - e. 0.0090 M NaOH (*hint: calculate pOH first and knowing pH + pOH = 14 at room temperature*)
 - f. 5.0M NaOH
- 12. What is the concentration of a sodium hydroxide solution if the pH is 11.48?
- 13. What is the concentration of a sodium hydroxide solution if the pH is 11.90?
- 14. What is the concentration of a sodium hydroxide solution if the pH is 14?
- 15. What is the concentration of HCl solution if the pH is 2.48?
- 16. What is the concentration of HCl solution if the pH is 3.40?
- 17. What is the concentration of HCl solution if the pH is 5.16?
- 18. What is the concentration of HCl solution if the pH is 1.04?

Answers

1. Q < K, $\ln(\frac{Q}{K}) < 0$, $\frac{Q}{K} < 1$ 2. B, D, G 3. C, G 4. C, G 5. C, G 6. D 7. a. more reactants will form b. more reactants will form c. no change d. more reactants will form 8. a. $Q = \infty$ b. A, B 9. a. $Q = \infty$ b. ii, v, vii c. i, iii, vi 10. a. $K_{new} = 0.020$ b. K_{new} =0.00040 11. $K_2 = (K_1)^{1/3}$ 12. $K_2 = (K_1)^{-1}$ 13. a. $K = \frac{K_1 \cdot (K_2)^2}{K_3}$ b. $K = \frac{1}{K_1 \cdot K_3}$

Answers in preparation for Chapter 14

Answers in preparation for Chapter 14	
1. $[OH^{-}] = [H_3O^{+}]$ 2.	c. $K_a = \frac{[H_3O^+][ClO_4^-]}{[HClO_4]}$
a. $[H_30^+] > [OH^-]$ and $pH < pOH$	d. 0.05 M
b. $[H_30^+] < [OH^-] and pH > pOH$	e. 100%; strong f. K₄>> 1
3. neutral	1. $R_a > 1$
 b, e c; need to know temp 	a0.5
6. $H_2SO_4 pH = 0.3$, $Ba(OH)_2 pH = 14.18$	b0.2
7. $1.5 \times 10^{-3} M$	c. 2.62
8. $HA_{(aq)} + H_2O_{(l)} \rightleftharpoons A_{(aq)} + H_3O_{(aq)};$	d. 1.41
$K_{a} = \frac{[H_{3}O^{+}]\cdot[A^{-}]}{[HA]}$	e. 11.95 f. 14.7
9. $A^{-}_{(aq)} + H_2O_{(l)} \rightleftharpoons HA_{(aq)} + OH^{-}_{(aq)};$	12. 0.0030 M
$K_b = \frac{[OH^-] \cdot [HA]}{[A^-]}$	13. 0.0079 M
[A] 10.	14. 1 M
a. $pH < 7$; acid + water	15. 0.0033 M
b. $HClO_{4(aq)} + H_2O_{(1)} \rightleftharpoons ClO_{4(aq)} + H_3O_{(aq)};$	16. 3.98 x 10 ⁻⁴ M
	17. 6.9 x 10 ⁻⁶ M
acid base conj. base conj. acid	18. $9.1 \cdot 10^{-2}$

Exam 1 answers

1. a. 4 b. 18 c. 8/3 d. 0 e. 0 2. a. 2 or 4 b. 0 3. a. 4060kPa b. 2.77*10³ kPa 4. 29g/mol 5. 538g/mol 6. 59.2kPa 7. 0.31Pa 8. C₃H₈>C₂H₆>CH₄ 9. A>d>b>s 10. 281K or 282K 11. PA=PB=PC 12. a. 430m/s b. Ar c. N₂ 13. $3K^+$ (g) + PO₄³⁻(g) -> $3K^+$ (aq) + PO₄³⁻(aq) 14. $(NH_4)_2CO_3(s) \rightarrow 2 NH_4^+(aq) + CO_3^{2-}(aq)$