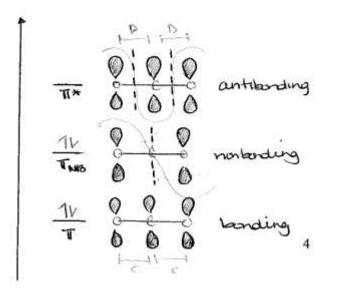

- 1. Sketch the MO diagram for HCO₃
 - a. Draw the Lewis structure and count the number of valence electrons:

- b. Assign hybridization of all the atoms.
 - b. Determine hybridization of the center atom(s). (Terminal atoms will have the same hybridization as the center atom.)
- c. Identify and sketch σ framework.
 - i. Identify number of σ bonds in the molecule and the number of e^{-} involved.
 - ii. Identify number of lone pairs and the number of e' involved.

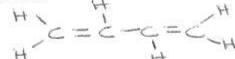
d. Identify π framework (is it localized or delocalized? how many π bonds?) (Hint: Decide which atoms can participate in π bonds.)

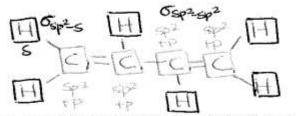
- i. Determine the number of electrons involved in the π bonds.
 - # π (electrons) = #Valence e' σ electrons lone pair electrons. $24 20 = 4e^{-1}$

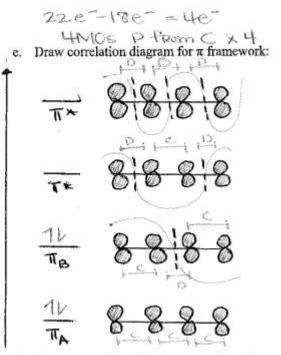

20 e + 40 = 240

45 x2e= Se

ii. Count the p AO's not involved in hybridization.


partital from O, p orbital From O, p cabital from C


- e. Sketch the corresponding π MO and corresponding energy correlation diagram for just π framework.
 - i. Rank them in terms of increasing energy (depending on number of loops).
 - ii. Fill the π MO's with the electrons involving in π bonds.
 - iii. Label the π MO's as bonding, antibonding and /or nonbonding.


2. Sketch the MO diagram for C_4H_6 (1,3-butadiene, $CH_2=CH-CH=CH_2$).

a. Draw L.S.

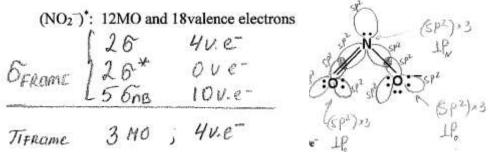
- c. How many pairs of electrons are in the σ framework
- d. How many pairs of electrons are in the π framework?

 $9\sigma + 2e^{-} + 8e^{-}$ $9\sigma + x_0 = 0$ $0\sigma_{NS} + 0 = 0$ $18e^{-}$ $18e^{-}$

#VE=22

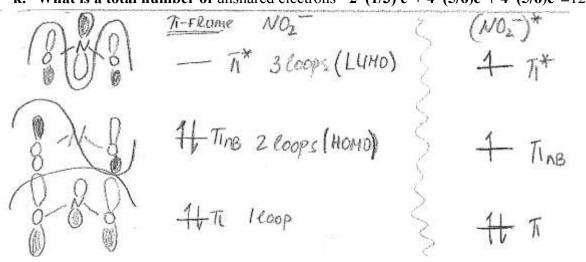
6(1)+4(4)=220

f. How many pairs of electrons are shared between the middle two carbons in 1,3-butadiene

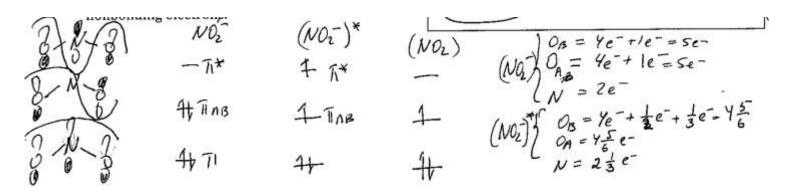

paine 5

g. How many pairs of electrons are shared between the first two carbons in 1,3-butadiene

11/6+11/6+4/3=5 hands ischuren caratans

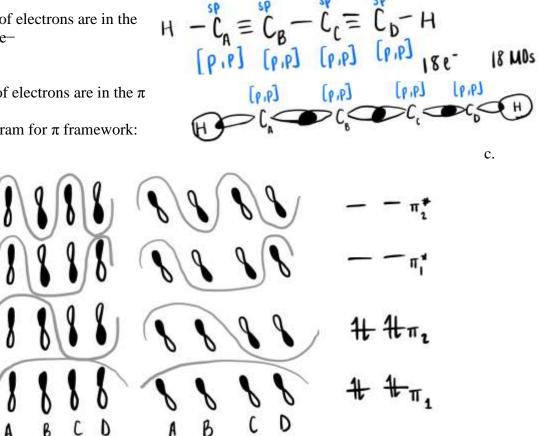

5

3. Assume light is absorbed by NO_2^- to create the excited molecule $(NO_2^-)^*$ in which one electron has shifted from the HOMO to the lowest unoccupied molecular orbital (LUMO), the π antibonding MO. For an excited state, $(NO_2^-)^*$ answer following questions:


- **a.** How many electrons are in σ bonding orbitals? 4e
- **b.** How many electrons are in σ nonbonding orbitals? **10e**⁻
- c. How many electrons are in π bonding orbitals? $2e^{-}$
- d. How many electrons are in π antibonding orbitals? **1e**⁻
- e. How many electrons are in π nonbonding orbitals? 1e⁻
- f. How many electrons are shared between O_{left} and N? $3e^{-}$
- g. How many electrons are shared between Oright and N? 3e⁻
- h. How many unshared electrons are on O_{left} ? $(4e^{-})_{\sigma-frame} + (1/2 e^{-})_{\pi nonbonding} + (1/3 e^{-})_{\pi^{+}} = 4*(5/6)e^{-}$
- i. How many unshared electrons are on O_{right} ? 4*(5/6) e^{-1}
- j. How many unshared electrons are on N? (2e⁻)_{oframe} + (1/3 e⁻)_{π^*}=2*(1/3) e⁻

k. What is a total number of unshared electrons = $2*(1/3) e^{-} + 4*(5/6)e^{-} + 4*(5/6)e^{-} = 12 e^{-}$

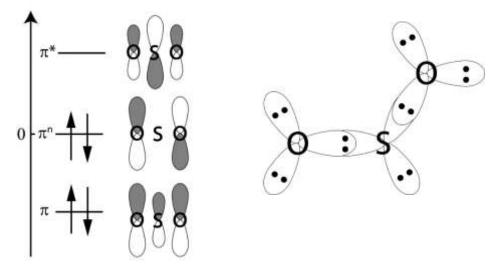
I. What has happened to the dipole moment of NO_2^- ?(assume the σ framework is unaffected.)


Dipole moment will decrease less separation of the charge.

- 4. Sketch the MO diagram for C_4H_2 , $(C_AH \equiv C_B C_C \equiv C_DH)$. Diacetylene
 - Determine and draw σ framework: a.
 - b. How many pairs of electrons are in the σ framework? 10 e-

5.

- a. How many pairs of electrons are in the π framework? 8 e-
- b. Draw energy diagram for π framework:



- d. How many pairs of electrons are shared between the middle two carbons in C_4H_2 1(2/3) pairs or 3(1/3)e-
- e. How many pairs of electrons are shared between the first two carbons in C_4H_2 , 2(2/3) pairs or 5(1/3) e-

- 6. What is the hybridization of the oxygen atoms in SO_2 ?
 - a. Carbon dioxide, SO₂, has a total of 9 pairs of electrons.
 - b. How many pairs of electrons are in the σ framework of SO₂?
 - c. How many bonding π electrons are there? 2e⁻
 - d. How many non-bonding π electrons are there? 2 e⁻
 - e. How many electrons are there on either terminal atom that are **not shared** with the central atom? 5e⁻
 - f. How many electrons are there on the central atoms that are **not shared** with the terminal atoms?2e⁻
 - g. How many electrons that are shared with the central and terminal atoms? 6e⁻

 π framework diagram

 σ framework

- 7. What is the hybridization of the oxygen atoms in CO₂?(for help go to :http://goo.gl/6hBD8X)
 - a. Carbon dioxide, CO₂, has a total of 8 pairs of electrons. How many pairs of electrons are in the σ framework of CO₂? 4 pairs
 - b. How many bonding π electrons are there? 4e⁻
 - c. How many non-bonding π electrons are there?4e⁻
 - d. How many electrons are there on either terminal atom that are **not shared** with the central atom? 4e⁻
 - e. How many electrons are there on the central atoms that are **not shared** with the terminal atoms? 0

<u>Additional Examples</u>: Determine σ -framework and corresponding π MO correlation diagram for: H₂CO, C₃H₅⁻, HCO₂⁻, HOCO₂⁻, N₃H