

- 2. σ-framework
- 3. π -framework
- 4. $\pi_{localized}$ vs. $\pi_{delocalized}$

For help go to :http://goo.gl/6hBD8X and Mahaffy,2e, p386-397, p406-407

<u>Molecular Orbital Instructions--</u>Making correlation diagrams for π -framework of polyatomic molecules:

- 1. Draw Lewis Structure (LS) and any resonance structures
 - a. Count the number of valence electrons
 - b. Assign hybridization of all the atoms
 - Determine hybridization of the center atom(s)
 - Terminal atoms will have the same hybridization of the center atom.
- 2. Identify σ -framework
 - a. Identify number of σ bonds in the molecule and the number of e-involved
 - b. Identify number of lone pairs and the number of e involved
- 3. Identify π -framework
 - a. Determine the number of electrons involved in the π bonds
 - # π electrons = (# valence e⁻) (# σ electrons) (lone pair electrons in the σ -framework)
 - b. Count the p AOs not involved in hybridization
- 4. Sketch the corresponding π MO.
 - a. Rank them in terms of increasing energy (depending on number of loops)
 - b. Fill the π MOs with the electrons involving in π bonds
 - c. Label the π MOs as bonding, antibonding and/or nonbonding

- 1. Sketch the MO diagram for HCO_{3}^{-}
 - a. Draw the Lewis structure and count the number of valence electrons

- b. Assign hybridization of all the atoms
 - i. Determine hybridization of the center atom(s)
- c. Identify and sketch σ -framework
 - i. Identify number of σ bonds in the molecule and the number of e^{\cdot} involved
 - ii. Identify number of lone pairs and the number of e- involved

- d. Identify π framework (Is it localized or delocalized? How many π bonds?) *Hint: Decide which atoms can participate in \pi bonds.*
 - i. Determine the number of electrons involved in the π bonds
 - ii. Count the p AOs not involved in hybridization
- e. Sketch the corresponding π MO and corresponding energy diagram for just π -framework.
 - i. Rank them in terms of increasing energy (depending on number of loops)
 - ii. Fill the π MO's with the electrons involving in π bonds
 - iii. Label the π MO's as bonding, antibonding and/or nonbonding

- Sketch the MO diagram for C₄H₆ (1,3-butadiene, CH₂=CH-CH=CH₂).
 a. Draw L.S.
 - b. Determine and draw σ -framework:

- c. How many pairs of electrons are in the $\sigma\mbox{-}framework$
- d. How many pairs of electrons are in the π -framework?
- e. Draw energy diagram for π -framework:

- f. How many pairs of electrons are shared between the middle two carbons in 1,3-butadiene?
- g. How many pairs of electrons are shared between the first two carbons in 1,3-butadiene?

- 3. Assume light is absorbed by NO_2^- to create the excited molecule $(NO_2^-)^*$ in which one electron has shifted from the HOMO to the lowest unoccupied molecular orbital (LUMO), the π antibonding MO. For an excited state, $(NO_2^-)^*$ answer following questions:
 - a. How many electrons are in σ bonding orbitals?
 - b. How many electrons are in σ nonbonding orbitals?
 - c. How many electrons are in π bonding orbitals?
 - d. How many electrons are in π antibonding orbitals?
 - e. How many electrons are in π nonbonding orbitals?
 - f. How many electrons are shared between O_{left} and N?
 - g. How many electrons are shared between O_{right} and N?
 - h. How many unshared electrons are on O_{left} ?
 - i. How many unshared electrons are on O_{right}?
 - j. How many unshared electrons are on N?
 - k. What is a total number of unshared electrons?
 - l. What has happened to the dipole moment of NO_2^- ?(assume the σ framework is unaffected.)

- 4. Sketch the MO diagram for C_4H_2 , ($C_AH \equiv C_B C_C \equiv C_DH$). Diacetylene.
 - a. Determine and draw σ -framework:
 - b. How many pairs of electrons are in the σ -framework?
 - c. How many pairs of electrons are in the π -framework?
 - d. Draw energy diagram for π framework:
 - e. How many pairs of electrons are shared between the middle two carbons in C₄H₂,
 - f. How many pairs of electrons are shared between the first two carbons in C_4H_2

- 5. What is the hybridization of the oxygen atoms in SO₂?
 - a. Sulfur dioxide, SO₂, has a total of 9 pairs of electrons. How many pairs of electrons are in the σ -framework of SO₂?
 - b. How many bonding π electrons are there?
 - c. How many non-bonding π electrons are there?
 - d. How many electrons are there on either terminal atom that are not shared with the central atom?
 - e. How many electrons are there on the central atoms that are not shared with the terminal atoms?
 - f. How many electrons that are shared with the central and terminal atoms?
- 6. What is the hybridization of the oxygen atoms in CO₂? (for help go to http://goo.gl/6hBD8X)
 - a. Carbon dioxide, CO_2 , has a total of 8 pairs of electrons. How many pairs of electrons are in the σ -framework of CO_2 ?
 - b. How many bonding π electrons are there?
 - c. How many non-bonding π electrons are there?
 - d. How many electrons are there on either terminal atom that not shared with the central atom?
 - e. How many electrons are there on the central atoms that not shared with the terminal atoms?

Additional Examples: Determine σ -framework and corresponding π MO energy diagram for: H₂CO, C₃H₅⁻, HCO₂⁻, HOCO₂⁻, N₃H.

Useful information:

 $\pi_{localized} \text{ vs. } \pi_{delocalized}$

Properties of π systems

- $\pi_{\text{localized}}$ electron density localized between two atoms.
- $\pi_{delocalized}$ electron density localized between three or more atoms.
- Stabilizing effect delocalized π systems are lower in energy than localized

Energy diagrams for π framework of polyatomic molecules

- Follow MO recipe above: draw Lewis structure, count electrons, identify hybridization
- Draw σ-framework
- Draw *π*-framework
 - a. Determine the number of p AOs not involved in $\sigma\mbox{-}framework$
 - b. Count total number of valence electrons that belong to π -framework
 - c. Decide if you have $\pi_{\text{localized}}$ or $\pi_{\text{delocalized}}$
 - d. Sketch the corresponding π MO based on the relative energy levels (depending on number of loops) and identify bonding, nonbonding and antibonding π MO

Example 1: Here is an example of a delocalized π system of the allyl cation, C₃H₅+.

2 nodal planes perpendicular to σ framework

3 energy loops

1 nodal plane perpendicular to o framework 2 energy loops antibonding

 \sim

non-bonding

0 nodal planes perpendicular to σ framework

1 energy loop

