		CH102 Spring 2019	
		Discussion #1	
		Chapter 10	
TF's name:	LA name:	Discussion Day/Time:	Student name:
		• •	

Things you should know when you leave discussion today:

- Polyatomic (more than two) molecular orbitals, http://goo.gl/6hBD8X, Mahaffy, 2e p386-397, p406-407
 ✓ Review Lewis Structures!!
 - ✓ Steric Number (SN) = number of atoms + number of lone pairs attached to the <u>center</u> atom
- Hybridized atomic orbitals: sp³ (SN=4), sp² (SN=3), sp (SN=2) http://demonstrations.wolfram.com/HybridOrbitalsInOrganicChemistry/

Example 1. A σ -frame with sp³ hybridized atomic orbitals: methane, CH₄ 1s + 3p = 4 sp³ hybridized AOs (SN=4, with 109.5° angle)

Example 2. A σ -frame (top left), a π -frame (bottom left) and π -energy diagram (in the middle) with sp² hybridized orbitals: ethene, H₂CCH₂

tour sp³ interid orbitals

 $1s + 2p = 3 sp^2$ hybridized AOs and 1 free p AO perpendicular to the plane of the molecule. (SN=3, with 120° angle)

each MO orbital is th

Example 3. A σ -frame with sp hybridized atomic orbitals: 1s + 1p = 2 sp hybridized AOs and 2 free p AO perpendicular to the plane of the molecule and perpendicular to each other. (SN=2, with 180° angle)

- 1. If you have two atoms that together have 5 atomic orbitals, when those atoms combine to form a molecule, how many molecular orbitals are you going to have?
- 2. Are hybridized orbitals atomic orbitals or molecular orbitals?

- 3. What is the hybridization of the center atoms for the following molecules? *Hint: Draw the Lewis structures. Terminal atoms will have the same hybridization of the center atom.*
 - a. CO₂
 - b. H₃COH
 - c. HCOOH
- 4. Draw correlation diagram for NH₃ using hybridized AOs. *Hint: use a correlation diagram of CH₄ below for guidance.*
 - a. Draw the Lewis structure for $\ensuremath{\mathsf{NH}}\xspace_3$ and determine the steric number.
 - b. How many AOs do you start with?
 - c. Determine the hybridization.
 - d. How many hybridized atomic orbitals do you have?
 - e. Draw correlation diagram for NH₃.

5. Using hybridized atomic orbitals, sketch the σ-frame for the MO structure for C₂H_{6.} *Hint: first draw a Lewis structure, and determine steric number (SN) of the center atoms.*

6. Using the sp² hybrid orbitals, sketch σ -frame and π -frame structure for H₂CCH₂

7. Using the sp hybrid orbitals, sketch MO structure for HCCH. (Sketch σ -frame and π -frame, draw π -energy diagram)

Challenge problem in preparation for next week:

- 8. Sketch the MO structure of H_2CO_3 .
 - a. Draw the Lewis structure and count the number of valence electrons:

- b. Assign hybridization of all the atoms (use your Lewis structure).
 - i. Determine hybridization of the center atom(s).Terminal atoms will have the same hybridization as the center atom.

- c. Identify and sketch σ -framework.
 - i. Identify number of σ bonds in the molecule and the number of e^{-} involved.
 - ii. Identify number of lone pairs in the σ framework and the number of e⁻ involved.
- d. Identify π -framework, is it localized or delocalized? How many π bonds? *Hint: Decide which atoms can participate in \pi bonds.*
 - i. Count the p AOs not involved in hybridization.
 - ii. Determine the number of electrons involved in the π bonds. # π electrons = (# valence e⁻) - (# σ electrons) - (lone pair electrons in the σ -framework)
- e. Sketch the corresponding π MO and corresponding energy diagram for just π -framework.
 - i. Rank them in terms of increasing energy (depending on number of loops).
 - ii. Fill the π MOs with the electrons involving in π bonds.
 - iii. Label the π MOs as bonding, antibonding and/or nonbonding.

Instructions to make correlation diagrams for π -framework of polyatomic molecules:

- 1. Draw the Lewis structure and count the number of valence electrons.
- 2. Assign hybridization of all the atoms.
- Determine hybridization of the central atom(s).
 Note: Terminal atoms will have the same hybridization as the central atom.
- 4. Identify and sketch σ -framework.
- 5. Identify number of σ bonds in the molecule and the number of e- involved.
- 6. Identify number of lone pairs and the number of e- involved.
- *7.* Identify π -framework (Is it localized or delocalized? How many π bonds?) *Hint: Decide which atoms can participate in* π *bonds.*
- 8. Determine the number of electrons involved in the π bonds.

π electrons = (# valence e⁻) - (# σ electrons) - (lone pair electrons in the σ -framework)

- 9. Count the p AOs not involved in hybridization.
- 10. Sketch the corresponding π MO and corresponding energy correlation diagram for just π -framework.
 - i. Rank them in terms of increasing energy (depending on number of loops).
 - ii. Fill the π MOs with the electrons involving in π bonds.
 - iii. Label the π MO's as bonding, antibonding and/or nonbonding.

Handout Answers:

- 1. 5
- 2. Atomic orbital
- 3.
 - a. sp
 - b. sp³, sp³
 - c. sp³; sp²; sp²

Review from last semester:

- **1.** Atomic Orbital (s, p, d, f) vs. Molecular Orbital (σ , σ^* , NB, π , π^* , π_{nb})
- **2.** Total Number of AO = Total Number of MO
- **3.** Constructive and destructive interference (in phase and out-of-phase interaction)
 - Sigma bond is achieved by head-on-overlap
 - $\circ~$ Bonding MO ($\sigma,\pi)$: constructive interference in-phase interaction
 - $\circ~$ Antibonding MO (σ^*, π^*): destructive interference out-of-phase interaction
 - \circ π formed from side-by-side overlap of available p AO
 - $\circ \pi^*$ is out-of-phase overlap of available p AO

nding MO

of two 2p atomic orbitals to give the 2pt

- Below on the left is an empty molecular orbital diagram of F₂. Below to the right are various molecular orbitals, with the inter-nuclear axes shown with a dotted line. You will fill in the boxes next to the molecular orbitals in part (a). You will fill in the circles on the molecular orbital diagram in part (b). <u>Carefully follow the instructions below</u>.
 - a. In the box to the <u>right</u> of the molecular orbitals formed in F_2 above, provide the proper name of each molecular orbital (e.g. σ_{2s} , π^* , etc).
 - b. Match each molecular orbital on the right to the molecular orbital diagram on the left. Show your answer by placing the <u>letter</u> in the circle beside the molecular orbital. Letter "B" is filled in for you.
 - c. In the molecular orbital diagram above, populate both the atomic and molecular orbitals with electrons by putting arrows on the horizontal lines for F_2 and the fluorine atoms. All three systems are in the ground state.

d. Using the diagram above to guide you, calculate the bond orders for the following species.

 $F_{2^{+}}$: _____ $F_{2^{2_{-}}}$: _____

e. Naturally Fluorine is a diamagnetic molecule. Let say in the planet far, far away we found a fluorine that is paramagnetic: propose and draw the molecular orbitals that Fluorine must have to be paramagnetic.