

Lecture 32 CH102 A2 (MWF 11:15 am) Spring 2019		Copyright © 2019 Dan Dill d	an@bu.edu
Find S at a particular temperature			
Entropies typically are tabulated at 298 K.	Selected Thermodynamic Data* at 25 °C		
These are called standard entropies, S°	Species	$\Delta_{\rm f} H^{\circ}$ (kJ mol ⁻¹)	S° (J K ^{−1} mol ^{−1})
Note, these absolute entropies,	Aluminum Al(s)	0	28.3
not entropy changes	AlCl ₃ (s) Al ₂ O ₃ (s)	-705.63 -1675.7	109.29 50.92
	Barium BaCl ₂ (s)	-858.6	123.68
	BaCO ₃ (s)	-1213	112.1
	BaO(s) BaSO ₄ (s)	-548.1 -1473.2	72.05
	Beryllium Be(s)	0	9.5
	Be(OH) ₂ (s)	-902.5	51.9
			15

Lecture 32 CMIVE 242 (MWF 11:15 am) Spring 2019 $\begin{aligned} \Delta_{\Gamma} S^{o} &= S^{o}(\text{products}) - S^{o}(\text{reactants}) \\ 2 Zn(s) + O_{2}(g) \rightarrow 2 ZnO(s) \\ \Delta_{\Gamma} S^{o} &= 2 \times 43.7 - (2 \times 41.6 + 205.0) = -200.8 \text{ J/K} \\ \Delta n_{g} &= -1, \text{ so } \Delta_{\Gamma} S^{o} \text{ is large and negative} \\ N_{2}(g) + O_{2}(g) \rightarrow 2 NO(g) \\ \Delta_{\Gamma} S^{o} &= 2 \times 210.8 - (191.6 + 205.0) = +25 \text{ J/K} \\ \Delta n_{g} &= 0, \text{ so } \Delta_{\Gamma} S^{o} \text{ is small} \end{aligned}$

