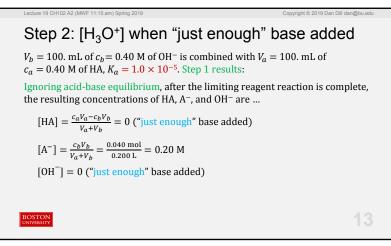
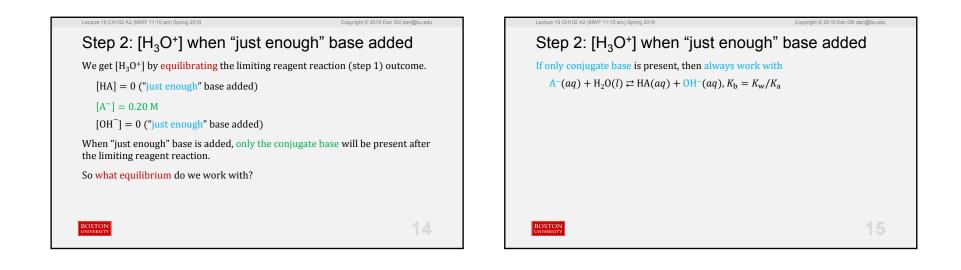
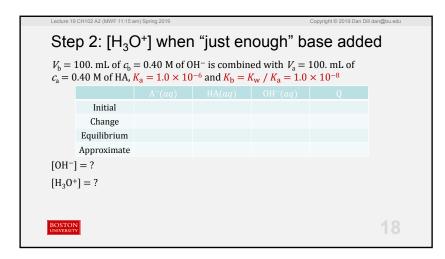

Lecture '	19 CH102 A2 (MWF 11:15	am) Spring 2019		(Copyright © 2019 Dan Dill	dan@bu.edu
Ste	ep 2: [H ₃ 0	O⁺] wher	n "too littl	e" base a	added	
5	100. mL of <i>c_b</i> 0.10 M of HA			ed with $V_a = 3$	300. mL of	
		HA(aq)	${\rm H}_{3}{\rm O}^{+}(aq)$	A-(<i>aq</i>)		
	Initial	0.010/V	10-7	0.020/V	$10^{-7} < K_a$	
	Change	-x	+x	+ <i>x</i>		
	Equilibrium	0.010/V - x	$10^{-7} + x$	0.020/V + x	Ka	
	Approximate	$\approx 0.010/V$	$\approx x$	$\approx 0.020/V$	Ka	
[H ₃ 0	$\mathbf{P}^+] = x = \frac{K_a[\mathbf{H}_a]}{[\mathbf{A}^-]}$	$\frac{A}{A} = \frac{1.0 \times 10^{-4} \times 0}{0.020}$	$\frac{0.010/V}{V} = 5.0 >$	< 10 ⁻⁵		
BOSTC	DN ITTY					7







Lecture 19 CH102 A2 (MWF 11:15 am) Spring 2019	Copyright © 2019 Dan Dill dan@bu.edu	Lecture 19 CH102 A2 (MWF 11:15 am) Spring 2019	Copyright © 2019 Dan Dill dan@bu.edu
[TP] Which of the following is true about the a w 0% 1. $K_b \ll 1$ 0% 2. $K_b \approx 1$ 0% 3. $K_b \gg 1$ 0% 4. $K_b \gg K_w$ 0% 5. $K_b \ll K_w$ 0% 6. 1 and 4 0% 7. 1 and 5 0% 8. 1, 4, and 5	eak base?	[Quiz] Which of the following is true about the conjuga acid HA? 0% 1. A ⁻ is a strong base 0% 2. A ⁻ is a weak base 0% 3. Not a base, since $K_b \ll K_w$ 0% 4. Further information needed	ıte base A [−] of the weak
BOSTON UNIVERSITY	16	BOSTON UNIVERSITY	17

			2	$K_{\rm w} / K_{\rm a} = 1.0$	× 10 ⁻⁸	
Ini	tial	$\frac{1}{0.20}$	HA(aq)	0H ⁻ (aq) 10 ⁻⁷	$0 < K_{\rm h}$	
	nge	-x	+x	10 +x	$0 < K_{\rm b}$	
	0	20 - x	x	$10^{-7} + x$	Kb	
		≈ 0.20	x	≈ <i>x</i>	Kb	
$OH^{-}] = x =$	$=\sqrt{K_{\rm b}\times[{\rm A}]}$	$-] = \sqrt{1.0 \times 10^{-1}}$	$\times 10^{-8} \times 0.2$	$\overline{0} = 4.5 \times 10^{-10}$	-5	
(1 0+1) = V	/ [0H-] -	1.0×10 ⁻¹⁴	2.2×10^{-10})		