

Lecture 15 CH102 A2 (MWF 11:15 am) Spring 2019	Copyright © 2019 Dan Dill dan@bu.edu
Liquid water	
Using chevrons (/\) to represent water molecules, r water. Show about 50 water molecules in your skete liquid water rather than solid water (ice).	nake a sketch of liquid ch. Remember to represent
If there are no hydronium ions, then $[H_3O^+] = 0$, and	l so
$pH = -\log([H_30^+]) = -\log(0) = -\log(10^{-\infty}) =$	$= -(-\infty) = +\infty$
since we can represent 0 as $\frac{1}{10^{+\infty}} = 10^{-\infty}$	
BOSTON UNIVERSITY	

Lecture 15 CH102 A2 (MWF 11:15 am) Spring 2019	Copyright © 2019 Dan Dill dan@bu.edu	Lecture 15 CH102 A2 (MWF 11:15 am) Spring 2019	Copyright © 2019 Dan Dill dan@bu.edu
Liquid water			
Further modify your sketch of liquid water so that	it corresponds to $pH = 7$.	Weak acids and strong aci	ds in aqueous solution
$\frac{10^{-7}\text{mol ions}}{1\text{L}} \times \frac{10^7}{10^7} \times \frac{1\text{L}}{55 \text{ mol water}} \approx$	$\frac{1 \text{ ion}}{55 \times 10^7 \text{ waters}}$		
This means neutral water contains only about 1 h; (0.55) billion water molecules. Nonetheless, this t dramatic consequences.	rdronium ion for every half ny, tiny amount has		
BOSTON UNIVERSITY	14		20

Lecture 15 CH102 A2 (MWF 11:15 am) Spring 2019 Copyright © 2019 Dan Dill dan@bu.edu	Lecture 15 CH102 A2 (MWF 11:15 am) Spring 2019 Copyright © 2019 Dan Dill dan@bu.edu	
Is an acid strong or weak?	Is an acid strong or weak?	
A c_a M aqueous solution of an acid HA has pH = x and so [H ₃ 0 ⁺] = 10 ^{-x} .	A c_a M aqueous solution of an acid HA has pH = x and so [H ₃ O ⁺] = 10 ^{-x} .	
From this, how can we know whether HA is a strong acid or a weak acid?	From this, how can we know whether HA is a strong acid or a weak acid?	
Key idea: Strong acids react nearly 100%: HA(aq) + H ₂ O(l) \rightleftharpoons H ₃ O ⁺ (aq) + A ⁻ (aq)	Key idea: Weak acids react much less than 100%: $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$	
The closer $[H_30^+]$ is to $c_a M$, the stronger the acid.	The closer [HA] is to c_a M, the weaker the acid.	
The larger $K_a = \frac{[H_3O^+] [A^-]}{[HA]}$, the stronger the acid.	The smaller $K_a = \frac{[H_3O^+] [A^-]}{[HA]}$, the weaker the acid.	
BOSTON UNIVERSITY 23	BOSTON UNIVERSITY 27	

