

Lecture 29 CH102 A1 (MWF 9:05 am) Spring 2018	Copyright © 2018 Dan Dill dan @bu.edu
steam \rightarrow water at 94 °C	
$\Delta S_{\rm tot} = -(\Delta H_{\rm sys}/T) + \Delta S_{\rm sys}$	
At 100 °C steam and water are in equilibrium, so	
$\Delta S_{\rm tot} = 0 = +\Delta H_{\rm vap} / (\mathbf{373 \ K}) + \Delta S_{\rm sys}$	
From this we know that ΔS_{sys} = $-\Delta H_{vap} / (373 \text{ K})$ = $-(40.65 \times 10^3 \text{ J/mol}) / (373 \text{ K})$ = $-108.9 \text{ J} / (\text{mol K})$	
BOSTON UNIVERITY	23