

Lecture 20 CH102 A2 (MWF 11:15 am) Spring 2018	Copyright © 2018 Dan Dill dan @bu.edu
Revised initial method for strong acid	
An acid, HA, has $K_a = 1 \ge 10^5$. Calculate the molarity of unreacted HA(<i>aq</i>) in a 0.02 M solution of HA.	
$[H_3O^+] = 0.02$	
$[A^-] = 0.02$	
[HA] = ?	
BOSTON	6

Lecture 20 CH102 A2 (MWF 11:15 am) Spring 2018	Copyright © 2018 Dan Dill dan@bu.edu
Different amounts of "not enough" base	
At 25 °C, the pH of a 1.0 L solution of $c_{\rm a} = c_{\rm b} = 1.00$ pH = 5.00	M, $K_a = 1 \times 10^{-5}$ is
Add 100. mL of 0.100 M NaOH	
$\mathrm{HA} \rightarrow 1.00 \ \mathrm{mol} - 0.010 \ \mathrm{mol} = 0.99 \ \mathrm{mol}$	
$A^- \rightarrow 1.00 \text{ mol} + 0.010 \text{ mol} = 1.01 \text{ mol}$	
$\downarrow \mathrm{HA}(aq) + \mathrm{OH}^{-}(aq) \rightarrow \mathrm{H}_{2}\mathrm{O}(l) + \uparrow \mathrm{A}^{-}(aq)$	
The pH of a 1.0 L solution of $c_a = 0.99 \text{ mol}/1.10 \text{ L}$, $c_b = 1.01 \text{ mol}/1.10 \text{ L}$ is $c_a/c_b = 1.00 \rightarrow 0.99/1.01$, pH $\rightarrow 5.01$ (tiny change!)	
BOSTON	14