Rubber band thermodynamics

General Chemistry, CH102 Spring 2011

1. When a rubber band is stretched rapidly, ...

0% 1. heat is given off
0% 2. heat is absorbed
0% 3. there is no heat flow, since only work is done

- 2. When a rubber band is stretched rapidly, heat is given off. This means upon stretching bonds are ...
 - 0% 1. broken
 - 0% 2. formed
 - 0% 3. neither broken nor formed, since the heat flow is due to the work done

0 of 5

10 ountdown Timer On Slide

- 3. When a rubber band is stretched rapidly, heat is given off due to formation of bonds within the rubber. For the process relaxed \rightarrow stretched, the entropy change of the the surrounding air, ΔS_{sur} , must be ...
 - 0% 1. $ΔS_{sur} > 0$ (positive)
 - $0\% 2. \Delta S_{sur} < 0$ (negative)
 - 0% 3. Further information needed

0 of 5

- 4. When a rubber band is stretched rapidly, the **total entropy change** (that of the of the rubber band, ΔS_{sys} , plus that of the surrounding air, ΔS_{sur}) must be ...
 - 0% 1. $\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{sur}} > 0$ (positive)
 - 0% 2. $\Delta S_{\text{tot}} = \Delta S_{\text{sys}} + \Delta S_{\text{sur}} < 0$ (negative)
 - 0% 3. Further information needed

0 of

10 Countdown

- 5. When a rubber band is stretched rapidly, the total entropy change is **negative**, since the rubber band **does not stretch by itself** (we must stretch it). The entropy change of the surrounding air is positive, since heat is given off. This means the entropy change of the rubber band upon being stretched **must be** ...
 - 0% 1. $\Delta S_{sys} > 0$ (positive)
 - 0% 2. $\Delta S_{sys} < 0$ (negative)
 - 0% 3. Further information needed

0 of 5

10 Countdown Timer On Slide

