Phase change: ice & water

General Chemistry, CH102 Spring 2011

In the phase change ice → water ...
 1. In the phase change ice → water ...
 0% 1. heat is given off to surroundings, so ΔH_{sys} < 0
 0% 2. heat is absorbed from surroundings, so ΔH_{sys} > 0
 0% 3. Heat is neither given off nor absorbed

2. In the phase change ice \rightarrow water, the entropy of the (ice and water) system ...

0% 1. goes up, so $\Delta S_{sys} > 0$ 0% 2. goes down, so $\Delta S_{sys} < 0$ 0% 3. does not change, so $\Delta S_{sys} = 0$

0 of 5

3. In the phase change ice \rightarrow water, the entropy of the surroundings ...

0% 1. goes up, so $\Delta S_{sur} > 0$

0% 2. goes down, so $\Delta S_{sur} < 0$

0% 3. does not change, so $\Delta S_{sur} = 0$

0 of 5

10 Countdown Timer On Slide

4. In the phase change ice \rightarrow water, we know that $\Delta S_{sys} > 0$ and that $\Delta S_{sur} < 0$. In terms of the magnitudes of these entropy changes, this means that we can express the total entropy change as ..

0% 1.
$$\Delta S_{tot} = + |\Delta S_{sys}| + |\Delta S_{sur}|$$

0% 2.
$$\Delta S_{\text{tot}} = -|\Delta S_{\text{sys}}| + |\Delta S_{\text{sur}}|$$

0% 3.
$$\Delta S_{\text{tot}} = + |\Delta S_{\text{sys}}| - |\Delta S_{\text{sur}}|$$

0 of 5

10

10

5. In the phase change ice \rightarrow water, we know that $\Delta S_{sys} > 0$ and that $\Delta S_{sur} < 0$, and so that $\Delta S_{tot} = + |\Delta S_{sys}| - |\Delta S_{sur}|$. At 0 °C, it must be true that ... [Hint: What do we know about ice \rightarrow water at 0 °C?]

0% 1.
$$|\Delta S_{sys}| = |\Delta S_{sur}|$$

0% 2.
$$|\Delta S_{sys}| > |\Delta S_{sur}|$$

0% 3.
$$|\Delta S_{sys}| < |\Delta S_{sur}|$$

0 of 5

10 Countdown Timer On Slide 6. In the phase change ice \rightarrow water, we know that $\Delta S_{\rm sys} > 0$ and that $\Delta S_{\rm sur} < 0$, and so that $\Delta S_{\rm tot} = + |\Delta S_{\rm sys}| - |\Delta S_{\rm sur}|$. At +10 °C, it must be true that ... [Hint: What do we know about ice \rightarrow water at +10 °C?]

0% 1. $|\Delta S_{\rm sys}| = |\Delta S_{\rm sur}|$ 0% 2. $|\Delta S_{\rm sys}| > |\Delta S_{\rm sur}|$ 0% 3. $|\Delta S_{\rm sys}| < |\Delta S_{\rm sur}|$

7. In the phase change ice \rightarrow water, we know that $\Delta S_{\rm sys} > 0$ and that $\Delta S_{\rm sur} < 0$, and so that $\Delta S_{\rm tot} = + |\Delta S_{\rm sys}| - |\Delta S_{\rm sur}|$. At -10 °C, it must be true that ... [Hint: What do we know about ice \rightarrow water at -10 °C?]

0% 1. $|\Delta S_{\rm sys}| = |\Delta S_{\rm sur}|$ 0% 2. $|\Delta S_{\rm sys}| > |\Delta S_{\rm sur}|$ 0% 3. $|\Delta S_{\rm sys}| < |\Delta S_{\rm sur}|$

8. In the phase change ice \rightarrow water, to a good approximation, $|\Delta S_{\text{sys}}$, $-10\,^{\circ}\text{C}| = |\Delta S_{\text{sys}}$, $0\,^{\circ}\text{C}| = |\Delta S_{\text{sys}}$, $+10\,^{\circ}\text{C}|$. Therefore, which of the following **must** be true about $|\Delta S_{\text{sur}}|$?

0% 1. $|\Delta S_{\text{sur}}|$, $-10\,^{\circ}\text{C}| = |\Delta S_{\text{sur}}|$, $0\,^{\circ}\text{C}| = |\Delta S_{\text{sur}}|$, $+10\,^{\circ}\text{C}|$ 0% 2. $|\Delta S_{\text{sur}}|$, $-10\,^{\circ}\text{C}| > |\Delta S_{\text{sur}}|$, $0\,^{\circ}\text{C}| > |\Delta S_{\text{sur}}|$, $+10\,^{\circ}\text{C}|$ 0% 3. $|\Delta S_{\text{sur}}|$, $-10\,^{\circ}\text{C}| < |\Delta S_{\text{sur}}|$, $0\,^{\circ}\text{C}| < |\Delta S_{\text{sur}}|$, $+10\,^{\circ}\text{C}|$

9. In the phase change ice \rightarrow water, we know that it must be that $|\Delta S_{\text{sur}}$, $-10\,^{\circ}\text{C}| > |\Delta S_{\text{sur}}$, $0\,^{\circ}\text{C}| > |\Delta S_{\text{sur}}$, $+10\,^{\circ}\text{C}|$. Which of the following accounts for this?

0% 1. $|\Delta S_{\text{sur}}| = |\Delta H_{\text{sur}}/T|$ and so goes down with T 0% 2. $|\Delta S_{\text{sur}}| = |\Delta H_{\text{sur}}|$ and does not change with T 0% 3. $|\Delta S_{\text{sur}}| = |\Delta H_{\text{sur}}|$ and so goes up with T