
CH 101 2018 Quiz 3 Key Thursday:

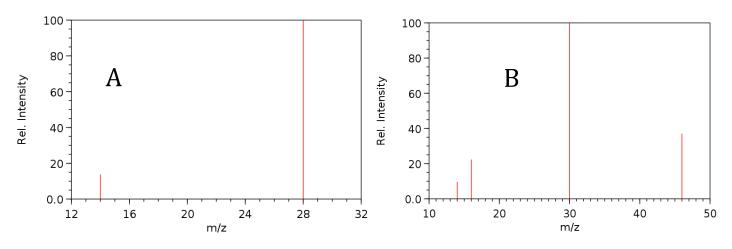
1. The mass spectrum of an unknown elemental sample is taken (spectra A). This sample is reacted with pure carbon and the mass spectrum of the product is taken (spectra B).

(1 points) rachting the clement in 17 and in

A: 0 or 0₂

B: CO₂

b. (2 points) In spectra B, what does the peak at 28 m/z represent?

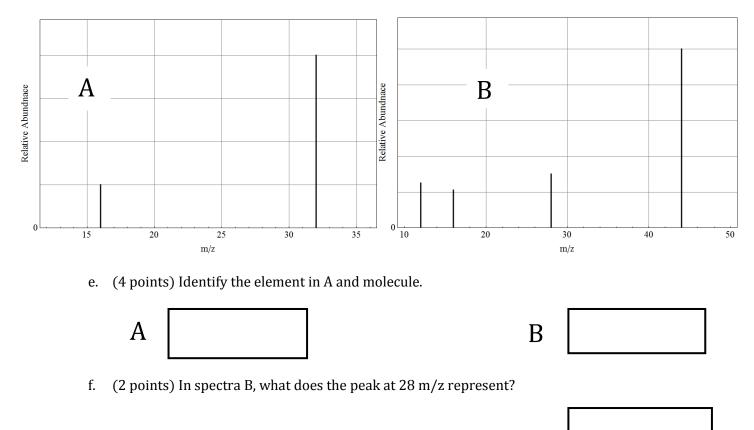

C0+

1. (4 points) There is an imaginary element Y with just one significant isotope, ²⁰Y, and another element A with just two isotopes, ²⁵A and ²⁸A. ²⁵A is five times as abundant as ²⁸A. Give the relative height of each of the molecular ion peaks of A₂Y₃, in order of increasing m/z value.

2.

Relative Heights: 25:10:1

1. The mass spectrum of an unknown elemental sample is taken (spectra A). This sample is reacted with O_2 gas and the mass spectrum of the product is taken (spectra B).


- c. (4 points) Identify the element in spectrum A and molecule in spectrum B.
 - A: N or N₂ B: NO₂
- d. (2 points) In spectra B, what does the peak at 30 m/z represent?

NO+

2. (4 points) There is an imaginary element Y with just one significant isotope, ²⁰Y, and another element A with just two isotopes, ²⁵A and ²⁸A, and ²⁵A is four times as abundant as ²⁸A. Give the relative height of each of the molecular ion peaks of A₂Y₃, in order of increasing m/z value.

Relative Heights: 16:8:1

2. The mass spectrum of an unknown elemental sample is taken (spectra A). This sample is reacted with pure carbon and the mass spectrum of the product is taken (spectra B).

3. (4 points) There is an imaginary element Y with just one significant isotope, ²⁰Y, and another element A with just two isotopes, ²⁵A and ²⁸A. ²⁵A is twice as abundant as ²⁸A. Give the relative height of the highest molecular ion peaks of A₂Y₃, from largest to the smallest.

Relative Heights: (largest m/z) _____ (smallest m/z)