Discussion Quiz #2 10 minutes

Thursday:

a) 3 molI₂
$$\frac{(1126.9g) \cdot 2}{1 molI_2}$$
 more than 1 gram

b) Amount of potassium containing 5×10^{50} more than 1 gram

$$5 \times 10^{50}$$
 electrons $\frac{1 Katom}{19e^{-}} \frac{1 mol K}{6.002 \cdot 10^{23} atoms} \frac{39.1g}{1 mol K}$

c)
$$\frac{6 \times 10^{15} \text{ u of Ba}}{1u} = \frac{\frac{1}{6.022 \cdot 10^{23}} g}{1u} = \frac{6 \cdot 10^{15}}{6.022 \cdot 10^{23}} g$$
 less than 1 gram

1. (3points) How many moles of hydrated ions are formed when 0.1 mol of calcium carbonate completely dissolves in water?

1 mol of CaCO₃: 1mol of Ca²⁺ and 1 mol of CO₃²-

$$0.1 mol \text{CaCO}_3 \frac{2 mol lons}{1 mol \text{CaCO}_3} = 0.2 mol$$

ions = 0.2 mol

- 2. A protein molecule has mass 12,000 u.
 - a. (2 points) Calculate the molar mass of the protein. Express your answer to the correct number of significant figures.

Molar mass = 12,000g/mol

$$12,000 \,\mathrm{u} \cdot \frac{\frac{1}{6.022 \cdot 10^{23}} \,g}{1u} = \frac{12000}{6.022 \cdot 10^{23}} \,g \cdot \frac{N_A}{mol} = \frac{12000}{6.022 \cdot 10^{23}} \,g \cdot \frac{6.022 \cdot 10^{23}}{mol} = 12000 \frac{g}{mol}$$

b. (3points) Calculate the mass of the single protein. Express your answer to the correct number of significant figures.

$$12,000 \,\mathrm{u} \cdot \frac{\frac{1}{6.022 \cdot 10^{23}} \, g}{1u} = 2.0 \cdot 10^{-20} \, g$$

mass = 2.0×10^{-20} g

Discussion Quiz #2 10 minutes

Friday

- 1. (2 points) For the following circle the one with the lightest mass?
 - a) 10 mol Br₂ more than 1 gram
 - d) Amount of calcium containing 5×10^{50} electrons more than 1 gram

e)
$$\frac{6 \times 10^{15} \text{ u of Cs}}{1u} = \frac{\frac{1}{6.022 \cdot 10^{23}} g}{1u} = \frac{6 \cdot 10^{15}}{6.022 \cdot 10^{23}} g$$
 less than 1 gram

- 2. (3points) How many moles of hydrated ions are formed when 0.1 mol of sodium nitrate completely dissolves in water?
 - 1 mol of NaNO₃: 1mol of Na+ and 1 mol of CO₃²-

$$0.1 \text{ mol NaNO}_3 \frac{2mols \text{ of lons}}{1mol \text{ NaNO}_3} = 0.2mols$$

ions
$$=0.2 \text{ mol}$$

- 3. A protein molecule has mass 18,000 u.
 - c. (2 points) Calculate the molar mass of the protein. Express your answer to the correct number of significant figures.

$$18000u \times \frac{\frac{1}{6.022140857}g}{1u} \times \frac{6.022140857}{1mol} = 18000 \frac{g}{mol}$$

Molar mass =
$$18,000 \text{ g/mol}$$

d. (3points) Calculate the mass of the single protein. Express your answer to the correct number of significant figures.

$$18000u \times \frac{\frac{1}{6.022140857}g}{1u} = 2.9 \times 10^{-20} \,\mathrm{g}$$

mass =
$$2.9 \times 10^{-20}$$
 g