Things you should know when you leave Discussion today:

- Balancing reactions by inspection Mahaffy, 2e sections 5.2-5.4, 5.6
- Calculations using limiting reactants. Mahaffy, 2e section 5.7
- Theoretical yield and Percent yield. Mahaffy, 2e section 5.8
- 1. Octanitrocubane (ONC) is a powerful explosive that, like TNT, is shock-insensitive (not readily detonated by shock). First synthesized by Philip Eaton and Mao-Xi Zhang in 1999 (Angewandte Chemie International Edition 39 (2): 401–404.), ONC is the most explosive chemical compound ever made (only nuclear weapons are more powerful). It detonates through the (unbalanced) reaction below.

 $C_8(NO_2)_8(s) \rightarrow CO_2(g) + N_2(g)$

- a. Balance the chemical reaction for the detonation of ONC.
- b. If we wanted to synthesize ONC from carbon dioxide and nitrogen gas (i.e. reverse the reaction) and we had 56.0 g of nitrogen gas and as much carbon dioxide as we wanted (it's "in excess"), how many moles ONC could you make if all nitrogen gas was used assuming 100% yield? Hint: write balance chemical reaction for making ONC.
- c. If we wanted to synthesize ONC from carbon dioxide and nitrogen gas (i.e. reverse the reaction) and we had 88.0 g of carbon dioxide and as much nitrogen gas as we wanted, how many moles ONC could you make assuming 100% yield? Note the difference from part b!
- d. If we wanted to synthesize ONC from carbon dioxide and nitrogen gas (i.e. reverse the reaction) and we had 88.0 g of carbon dioxide and 56.0 g nitrogen gas, how many grams ONC could you make assuming 100% yield?
- e. How many moles of the non-limiting reagent are left in excess?

- f. If we synthesized ONC from carbon dioxide and nitrogen gas using the amounts in part d and our yield was 87 grams, calculate the percent yield.
- g. What mass of a non-limiting reagent was used assuming percent yield from part f? Assume that no additional reactions take place.
- h. What mass of a limiting reagent was used assuming percent yield from part f? Assume that no additional reactions take place.
- i. Using the information in questions a-h fill in the following table. What is conserved during reaction? Number of grams? Number of moles?

	$CO_{2}(g)$	N ₂ (g)	$C_8(NO_2)_8(s)$
Starting amount in grams			
Starting amount in moles			
Change in moles Assuming 100% yield.			
Final amount in moles Assuming 100% yield.			
Change in grams Assuming 100% yield.			
Final amount in grams Assuming 100% yield.			
Change in grams Assuming 75% yield.			
Final amount in grams (Assuming 75% yield.)			

- 2. Consider a gas cylinder filled with 2.1 grams of $N_2(g)$ and 0.60 grams of $H_2(g)$. When reaction proceeds it forms ammonia.
 - a. Write balanced chemical reaction:
 - b. How many moles of reaction are in 2.1 grams of $N_2(g)$?
 - c. How many moles of reaction are in 0.60 grams of $H_2(g)$?
 - d. If the reaction goes to completion, how many grams of NH_3 are produced?
 - e. What is the mass of the cylinder contents after the reaction goes to completion? Does the mass of the cylinder change throughout the reaction?
 - f. If only 62% of the product formed in the reaction, what was the actual yield of the product?
- 3. Ammonia NH₃, (M_{NH3} = 17.0 g/mol) can be synthesized from the decomposition of urea, (NH₂)₂CO (M_{urea} = 60.0 g/mol), according to the reaction below. If the yield of the reaction is 55.0%, what mass (in g) of urea is required to form 8.50 g of ammonia? Hint: always check if reaction is balanced

 $(NH_2)_2CO(s) \rightarrow NH_2CONHCONH_2(s) + NH_3(g).$

- 4. During plant respiration, glucose $(C_6H_{12}O_6)$ and oxygen react to form carbon dioxide and water.
 - a. Write the balanced chemical reaction:
 - b. What mass (in g) of O_2 is needed to fully react with 36.0 grams of glucose (M = 180 g/mol) assuming 100% yield.
 - c. How many grams of CO₂ will be formed assuming 100% yield?

- d. How many grams of water form assuming 100% yield?
- e. What is the total mass of the reactants? How does that compare to the total mass of products?
- f. What is the sum of the moles of reactants? How does that compare to the total moles of products?
- g. How many grams of CO_2 will be formed assuming 58% yield?
- h. What mass (in g) of O_2 is needed to react with 36.0 grams of glucose with 58% yield?
- i. How many grams of water form assuming 79% yield?
- 5. An iron bar weighed **533** g. After the bar had been standing in moist air for a month, exactly **one-eighth** of the iron turned to **rust** (Fe_2O_3). Calculate the final **total mass**: of the **iron bar + rust**. **Road map**: Calculate the mass of Fe_2O_3 that can be made from $1/8^{\text{th}}$ of the mass of the original iron and add this to the mass of $7/8^{\text{th}}$ of the mass of the original iron.

a. Write balanced chemical reaction: $Fe(s) + \longrightarrow Fe_2O_3(s)$

6. If 4.88 g of 'barium chloride hydrate' is treated with sulfuric acid, it gives 4.66 g of anhydrous barium sulfate. How many water molecules were attached to the original barium chloride molecule?

1.

- a. $C_8(NO_2)_8(s) \rightarrow 8 CO_2(g) + 4 N_2(g)$
- b. 0.500 mol ONC
- c. 0.250 mol ONC
- d. 116 g ONC
- e. 1 mol N₂ excess
- f. 75% yield
- g. 21 g N₂
- h. 66 g CO₂
- i. N₂ is conserved w/ 28g excess (1 mol excess)

	CO ₂ (g)	N ₂ (g)	C8(NO2)8(S)
Starting amount in grams	88	56	0
Starting amount in moles	2	2	0
Change in moles*	-2	-1	+0.25
Final amount in moles*	0	1	0.25
Change in grams*	-88	-28	+116
Final amount in grams*	0	28	116
Change in grams $^{ m \vee}$	-66	-21	+87
Final amount in grams $^{ m \checkmark}$	22	35	87

*Assume 100. % yield

[√]Assume 75% yield

```
2.
```

- a. $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$
- b. 0.075 mol rxn
- c. 0.1 mol rxn
- d. 2.6 g NH3
- e. Mass does not change
- f. 1.6 g NH₃
- 3. 109 g urea needed

 $2 (NH_2)_2CO(s) \rightarrow NH_2CONHCONH_2(s) + NH_3(g)$

- 4.
- a. $C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(l)$
- $b.\ \ 38.4\ g\ 0_2$
- c. $52.8 \text{ g } \text{CO}_2$
- $d. \ \ 21.6 \ g \ H_2 0$
- e. Same
- f. Different
- g. 30.6 g CO₂
- h. $22.3 g O_2$ needed
- i. 17.1 g H₂O
- 5. 562 g
 - a. $4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$
- 6. 2 water molecules