Chem 101 Fall 2018 Discussion #10 Chapter 7 Student Name: ______ TF's name: _____ Discussion Day/Time: _____

Things you should know when you leave Discussion today:

- Enthalpy of the reaction Δ_{rxn} H°, Mahaffy, 2e section 7.6
 - Standard Molar Enthalpy of Formation ($\Delta_f H^\circ$) Mahaffy, 2e section 7.8
 - Calculating $\Delta_r H^\circ$ of the reaction by using Enthalpy of Formation $\Delta_f H^\circ$
- Calculating Δ_{rxn} H° Enthalpy of the reaction by using Bond Enthalpy Δ_B H Mahaffy, 2e section 7.9
- Hess' Law, Mahaffy, 2e section 7.7
- Energy diagrams change of state, Mahaffy, 2e section 7.5
- In preparation for next week: Hydrogen atom family album, PDF, 7 pages, <u>http://goo.gl/XPkcxv</u>
 - http://quantum.bu.edu/notes/GeneralChemistry/OneElectronOrbitalTomography.html
 - Glossary of electron waves in atoms, PDF, 1 pages, <u>http://goo.gl/oACWb1</u>
- 1. Define the Standard Enthalpy of Formation ($\Delta_f H^{\circ}$) then choose one below.

always positive	never positive	sometimes positive
-----------------	----------------	--------------------

- a. Is it possible for Standard Enthalpy of Formation ($\Delta_f H^{\circ}$) = 0? (If so, explain when.)
- 2. Write the chemical equation whose enthalpy change is equal exactly to the standard enthalpy of formation, $\Delta_f H^\circ$, of solid urea. ($\Delta_f H^\circ(H_2NCONH_2(s)) = -632 \text{kJ/mol}$).
 - a. Draw the energy diagram representation of the reaction in first part of the problem. *Hint: remember you need to identify your reactant and your products.*

Calculate the heat of combustion of 132.0g of propane, C₃H₈ (l), in excess oxygen using the following approximate enthalpies of formation: Δ_fH° (C₃H₈ (l)) = -104.7 kJ/mol, Δ_fH° (CO₂ (g)) = -393.5 kJ/mol, Δ_fH° (H₂O (g)) = -241.8 kJ/mol. *Hint: Start with writing the balanced chemical reaction.* Using Standard Enthalpy of Formation (Δ_fH°) for calculating enthalpy of reactions Δ_rH° Δ_{rrn}H° = ∑ n_{Product} (Δ_fH°) - ∑ n_{Peactant} (Δ_fH°) = ΔH_{fingl} - ΔH_{initial} = products - reactar

 $\Delta_{rxn}H^{\circ} = \sum_{products} n_{Product} \left(\Delta_{f}H^{\circ}\right) - \sum_{reactants} n_{Reactant} \left(\Delta_{f}H^{\circ}\right) = \Delta H_{final} - \Delta H_{initial} = \text{products} - \text{reactants}$

- **a.** Calculate the heat of combustion if reaction only preceded 75%. *Hint: Heat (q) equals* $\Delta_{rxn}H^{\circ}$ *times the number of moles of reaction.*
- 4. An atomization reaction breaks a compound apart into its gaseous atoms. Use the following atomization reactions and their enthalpies of atomization to *obtain the expression* for the enthalpy change of the reaction, $\Delta_{rxn}H$, in terms of ΔH_1 , ΔH_2 , ΔH_3 , and ΔH_4 for the combustion of one mole of gaseous ammonia to yield gaseous water and dinitrogen pentoxide, N₂O₅ (g).

 $\begin{aligned} \mathrm{NH}_{3}\left(\mathrm{g}\right) &\xrightarrow{} \mathrm{N}\left(\mathrm{g}\right) + 3 \mathrm{H}\left(\mathrm{g}\right) & \Delta \mathrm{H}_{1} \\ \mathrm{H}_{2}\mathrm{O}\left(\mathrm{g}\right) &\xrightarrow{} 2 \mathrm{H}\left(\mathrm{g}\right) + \mathrm{O}\left(\mathrm{g}\right) & \Delta \mathrm{H}_{2} \\ \mathrm{O}_{2}\left(\mathrm{g}\right) &\xrightarrow{} 2 \mathrm{O}\left(\mathrm{g}\right) & \Delta \mathrm{H}_{3} \\ \mathrm{N}_{2}\mathrm{O}_{5}\left(\mathrm{g}\right) &\xrightarrow{} 2 \mathrm{N}\left(\mathrm{g}\right) + 5 \mathrm{O}\left(\mathrm{g}\right) & \Delta \mathrm{H}_{4} \end{aligned}$

Using Bond Enthalpy ($\Delta_B H$) for to calculate the $\Delta_r H$ of the reaction: $\Delta_{rxn} H^\circ = \sum \Delta_B H(broken) - \sum \Delta_B H(formed)$

5. <u>Define the Bond Enthalpy</u> (Δ_B H) and choose one of choices below:

Always positive	Never positive	Sometimes positive
-----------------	----------------	--------------------

- a. Draw the energy diagram representation for bond energy:
- 6. Ethanol, CH₃CH₂OH(g), and dimethyl ether, CH₃OCH₃(g) are structural isomers.
 - a. Estimate the enthalpy of reaction ($\Delta_r H$) of the given reaction using the provided bond enthalpies.

 $CH_3CH_2OH(g) \rightarrow CH_3OCH_3(g)$

BondO-HC-HC-OC-CO=OC=O
$$\Delta_{\mathbb{B}} H(kJ/mol)$$
460.410.350.350.500.750.HHHHHHHHHHHHHHHHHHHHHHH

2

- a. Calculate the enthalpy of reaction (Δ_r H) using enthalpy of formations. (Ethanol, CH₃CH₂OH(l); Δ H_f°= -277 kJ/mol) and dimethyl ether, (CH₃OCH₃(g); Δ H_f°= -184. kJ/mol) Compare the bond enthalpy estimate to the enthalpy of formation value.
- 7. An enthalpy diagram of hydrogen gas combusting to form gaseous water is shown below.
 - a. Write down balanced chemical reaction for this process:
 - b. Fill in the horizontal lines using only the following species and corresponding coefficients in the appropriate boxes: H(g), O(g), and $H_2O(g)$, $H_2O(l)$.

c. For the labeled arrows on the diagram above, write the expression for the enthalpy change in terms of bond enthalpies and enthalpies of formation and enthalpy of vaporization.

A:	·····
B:	
C:	
D:	

d. Estimate the value of Δ_r H of the reaction above, in terms of the molar bond enthalpies Δ_b H(H–H) = 440.0 kJ/mol; Δ_b H(C–H) = 410.0 kJ/mol; Δ_b H(O=O) = 500.0 kJ/mol; Δ_b H(O–H) = 450.0 kJ/mol.

8. A 100. mL sample of 0.20 M HCl is mixed with 100. mL of 0.30 M NaOH in a calorimeter. Both solutions start at 22.50°C and, after mixing, the temperature rises to 23.50°C. Assuming that the calorimeter does not absorb any heat and that the solutions have the same heat capacity and density as pure water, what is the molar enthalpy of neutralization of the acid?

9. A chemist measures the enthalpy change ΔH during the following reaction:

$$2Al(OH)_3(s) \rightarrow Al_2O_3(s) + 3H_2O(l)$$
 $\Delta H = 40. \text{ kJ/mol}$

Use this information to determine the Δ_r H for the following reactions:

a. $Al_2O_3(s) + 3 H_2O(l) \rightarrow 2 Al(OH)_3(s)$	$\Delta_{\rm r} {\rm H} =$	kJ/mol
b. $3 \operatorname{Al}_2 O_3(s) + 9 \operatorname{H}_2 O(l) \rightarrow 6 \operatorname{Al}(OH)_3(s)$	$\Delta_{\rm r} H =$	kJ/mol
c. 4 moles of $Al_2O_3(s)$ are reacted with 6 moles of $H_2O(l)$ with	h 75% yield.	
		$q_P = $ kJ
d. When 3 moles of $Al(OH)_3(s)$ reacts with 100% yield.	$\Delta_{\rm r} {\rm H} =$	kJ/mol
10. Consider the following reaction for the oxidation of methane methanol (CH ₃ OH): 2 CH ₄ (g) + O ₂ (g) \rightarrow 2 CH ₃ OH(l), Δ_r H = -326 kJ/mol.	(CH ₄) to	$q_P = _$ kJ

a. Use the following bond enthalpies, and the enthalpy of reaction above, to calculate the enthalpy of vaporization of methanol (in kJ/mol). Data: $\Delta_b H(C-H) = 413 \text{ kJ/mol}, \Delta_b H(C-C) = 346 \text{ kJ/mol}, \Delta_b H(C-O) = 358 \text{ kJ/mol}, \Delta_b H(O-H) = 463 \text{ kJ/mol}, \Delta_b H(H-H) = 436 \text{ kJ/mol}, and \Delta_b H(O=O) = 498 \text{ kJ/mol}.$

 $\Delta_{vap}H(CH_3OH) =$ _____kJ/mol

11. (As seen in lecture) The enthalpy change of formation of NaBr(g) is $\Delta_f H = -143$ kJ. Complete the enthalpy diagram on the right, by labeling the three horizontal lines with the corresponding species and by labeling the three vertical arrows with the corresponding enthalpy change. Possible species to use in labels of the horizontal lines are Na(s), Na(g), Na₂(g), Br₂(l), Br(g) and Br₂(g). The labels of the vertical arrows consist of various enthalpies of formation, $\Delta_f H$, and bond enthalpies, $\Delta_b H$.

12. Consider the enthalpy change diagram below. Label horizontal lines with the substances involved in the chemical equation, then label the remaining lines with appropriate species. Write an expression for each labeled arrow (A-D) with the enthalpy change it corresponds to. $N_2(g) + 3 H_2(g) \rightarrow 2NH_3(g).$

- 13. When 1.00L of 2.00M Na₂SO₄ solution at 30.0°C is added to 2.00L of 0.75M Ba(NO₃)₂ solution at 30.0°C in a calorimeter, a white solid forms and the temperature of the final solution is 45.0°C. Assuming that the specific heat capacity of the solution is 6.00 J/(K·g) and that the density of the solution is 2.00g/ml calculate the enthalpy change (in kJ/mole) of BaSO₄ formed.
- 14. Consider the following chemical reaction:

 $N_2(g) + 3H_2(g) \rightarrow 2 NH_3(g)$ What is the $\Delta_{rxn}H$ and q_{rxn} when 0.28 g of N_2 and 1.8 g of H_2 react? ($\Delta_f H^o(NH_{3 (g)}]$) = -46 kJ/mol)

15. Using the following information for:

 $2Al(s) + 3Cl_2(g) \rightarrow 2AlCl_3(s)$

 $2Al(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2(g)$ HCl(g) \rightarrow HCl(aq) H_2(g) + Cl_2(g) \rightarrow 2HCl(g) AlCl_3(s) \rightarrow AlCl_3(aq)

 $\begin{array}{l} \Delta_{\rm r} {\rm H}^{\rm o}{}_1 = -1000.{\rm kJ/mol} \\ \Delta_{\rm r} {\rm H}^{\rm o}{}_2 = -80.0~{\rm kJ/mol} \\ \Delta_{\rm r} {\rm H}^{\rm o}{}_3 = -200.~{\rm kJ/mol} \\ \Delta_{\rm r} {\rm H}^{\rm o}{}_4 = -305.~{\rm kJ/mol} \end{array}$

- a. Calculate Δ_r H using (all values in kJ/mol)
- b. When 1.35g of Al(s) reacts with 0.710g of $Cl_2(g)$, 250. J of work is done. What is q_v for this reaction in kJ?

16. Calculate the standard enthalpy of formation $\Delta_{f}H^{\circ}$ of $Co_{3}O_{4}(s)$ from the following information. $2CoO(s) \rightarrow 2Co(s) + O_{2}(g) \qquad \Delta_{r}H^{\circ}_{rxn1} = 500. \text{ kJ/mol}$ $6CoO(s) + O_{2}(g) \rightarrow 2Co_{3}O_{4}(s) \qquad \Delta_{r}H^{\circ}_{rxn2} = -300. \text{ kJ/mol}$

17. Give the expression for the enthalpy of formation, $\Delta_{f}H$, of $CO_{2}(g)$ in terms of ΔH_{1} , ΔH_{2} , and ΔH_{3} .

$H_2O(l) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$	$\Delta_{\rm r} {\rm H} = \Delta {\rm H}_1$
$C_2H_6(g) \rightarrow 2C(s) + 3H_2(g)$	$\Delta_{\rm r} {\rm H} = \Delta {\rm H}_2$
$2CO_2(g) + 3H_2O(l) \rightarrow C_2H_6(g) + 7/2O_2(g)$	$\Delta_{\rm r} {\rm H} = \Delta {\rm H}_3$

- 18. The enthalpy of neutralization for the reaction of strong acid with strong base is -60. kJ/mol water produced. How much energy (in kJ) will be released when 200.0 mL of 0.400M HCl is mixed with and 150.0 mL of 0.500M NaOH?
- 19. Consider the following generic chemical reactions.

A + 2 B → C + 3 D $\Delta_r H^\circ_{rxn1}$ = 150. kJ/mol 2C + 6 D → E $\Delta_r H^\circ_{rxn2}$ = 100. kJ/mol Determine the value of ΔH°_{rxn} for the following related reactions.

a. $A + 2B \rightarrow \frac{1}{2}E$

b. $3C + 9D \rightarrow 3A + 6B$

c. $\frac{1}{2}C + \frac{3}{2}D \rightarrow \frac{1}{2}A + B$

- 20. A chemist measures the enthalpy change ΔH during the following reaction *Hint: look at the states of the reaction* $\Delta_{vap}H(H_2O) = 41$ kJ/mol. $2Al(OH)_3(s) \rightarrow Al_2O_3(s) + 3H_2O(l)$ $\Delta_{\rm rxn}$ H = 40. kJ/mol Use this information to determine the Δ_{rxn} *H* for the following reactions:
 - $\Delta_r H = __kJ/mol$ a. $Al_2O_3(s) + 3 H_2O(g) \rightarrow 2 Al(OH)_3(s)$ $\Delta_r H = k / mol$ b. $3 \text{Al}_2 \text{O}_3(s) + 9 \text{H}_2 \text{O}(g) \rightarrow 6 \text{Al}(\text{OH})_3(s)$
 - c. 4 moles of Al₂O₃(s) are reacted with 6 moles of H₂O(g) with 68% yield. $q_P = __kJ$
- 21. Fill in the horizontal lines using only the following species and their corresponding coefficients: $N_2(g)$, N(g), O(g), $O_2(g)$, $N_2O(g)$. For the labeled arrows on the diagram, write the expression for the enthalpy change in terms of bond enthalpies and enthalpies of formation.

 $N_2(l) + 1/2 O_2(g) \rightarrow N_2O(g)$

22. Alcohols are proposed as fuel sources for the future, and currently there are even cars that run on ethanol. The balanced chemical equations for the complete combustion of a standard alkane fuel and an alcohol are:

The result of combustion of one mole of propane is the same as combustion of one mole of propanol: three moles of carbon dioxide and four moles of water. This means the difference in the energy content of the two fuels is due to the bond enthalpies of the reactants. Which one propane or propanol makes a better fuel? *Hint: Use bond enthalpies calculate the enthalpy* difference, $\Delta H_{propanol}$ - $\Delta H_{propane}$, using the Lewis Structures above.

Bond	0-Н	C-H	C-0	C-C	0=0	C=0
$\Delta_{\rm B} H(kJ/mol)$	460.	410.	350.	350.	500.	750.

Remember, bond enthalpies give only approximate results for gas phase reactions. The actual enthalpies of combustion for propane and propanol are respectively: -2226 kJ/mol and -2020 kJ/mol. Seeing as you have to carry these fuels around with you, circle which fuel is more efficient on a per kilogram basis

Line 2: [Reactants (standard states)]

Numerical Answers:

1. Sometimes positive	$N_2(g) + 3 H_2(g)$
a. Yes	Line 3: [Product] 2NH ₃ (g)
2. $C(graphite) + \frac{1}{2}O_2(g) + 2H_2(g) + N_2(g)$	Line 4: [Product] 2NH ₃ (l)
\rightarrow H ₂ NCONH ₂ (s)	A: $\Delta_{b}H(N\equiv N) + 3\cdot\Delta_{b}H(H-H)$
$\Delta_{\rm r} {\rm H}^{\rm o} = \Delta_{\rm f} {\rm H}^{\rm o} ({\rm H}_2 {\rm NCONH}_2({\rm s}))$	B: Δ_{rxn} H or $2 \cdot \Delta_{f}$ H(NH ₃ (g))
3. $C_{3}H_{8}(l) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$:	C: $2 \cdot \Delta_{\rm f} H(\rm NH_3(l))$
100% = -6116 kI	D: $2\Delta_{vap}H$
a 75% = -4587 kJ	13360. kJ/mol
4 $\Lambda H_{mn} = \Lambda H_1 - 3/2 \Lambda H_2 + 2 \Lambda H_2 - \frac{1}{2} \Lambda H_4$	1492 kJ/mol; -0.92kJ
$5 \qquad \text{Always positive}$	15.
6	a. $\Delta H_{\rm rxn} = -1470$ kJ/mol;
o. . F0 kl/mol	b. $q_v = -4650 \text{ J}$
a. $50. \text{ KJ/III0I}$	16900. kJ/mol
D. 95 KJ/IIIOI	17. $3/2 \Delta H_1 - \frac{1}{2} \Delta H_2 - \frac{1}{2} \Delta H_3 = \Delta H_f$
/.	184.5 kJ
a. $2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$	19.
b. top: $4H(g) + 2O(g)$	a. 200. kJ/mol
$H_2O(g)$	b450. kJ/mol
$\Delta \cdot 2\Lambda_{\rm h} H({\rm H}_{\rm H}) + \Lambda_{\rm h} H({\rm H}_{\rm H})$	c75.0 kJ/mol
$B: -4\Lambda_{\rm b} H(0-H)$	20.
$C: -4\Delta_b H(O-H) - \Delta_{vap} H$	a160 kJ/mol
D: $2\Delta_f H(H_2O(l))$	b490 kI/mol
d. –420.0 kJ/mol	c220 kI
842 kJ/mol	21.
9.	a 2 N(g) + O(g)
a40. kJ/mol	$A: AH_{R}(N=N) + \frac{1}{2}AH_{R}(0=0)$
b120 kJ/mol	h N ₂ (σ) + ¹ / ₂ O ₂ (σ)
c60. kJ	$B_{1} = AH_{\ell}(N_{2}(1))$
d. 40. kJ/mol; 60. kJ	$\frac{1}{2} = \frac{1}{2} $
10. 4 kJ/mol	C: $M_2(1) + \gamma_2 O_2(g)$
11. A: $\Delta_{\rm b}$ H(Na-Na)+ $\Delta_{\rm b}$ H(Br-Br)	$d = N_2 O(\alpha)$
B: $2^*(-\Delta_b H(Na-Br))$	$D_{1-1} AH_{D}(N=N) - AH_{D}(N=0)$
$C: -\Delta_{f}H(Na_{2}(g)) - \Delta_{f}H(Br_{2}(g))$	$D = \Delta \Pi B (\Pi = \Pi) = \Delta \Pi B (\Pi = U)$
12. Line 1: [Separated atoms]	22. Fropane is better both by both enthalpy
2N(g)+6H(g)	and by enthalples of combustion