Lecture 21 CH101 A2 (MWF 11:15 am) Fal 2018 Copyright © 2016 Dan Dill dam@bu.edu [TP] Identify the correct statement about the redox reaction Zn ²⁺ (aq) + Cu(s) ≓ Cu ²⁺ (aq) + Zn(s). 17% 1. Zn ²⁺ (aq) is the reducing agent because it gains electrons 17% 2. Cu(s) is the reducing agent because it gains electrons 17% 3. Zn ²⁺ (aq) is the reducing agent because it loses electrons 17% 4. Cu(s) is the reducing agent because it loses electrons 17% 5. Zn ²⁺ (aq) is the reducing agent because it is reduced 17% 6. Cu(s) is the reducing agent because it is reduced	Lecture 21 CH101 A2 (MWF 11:15 am) Wednesday, October 24, 2018 For today • Balancing oxidation-reduction equations • Complexation as Lewis acid-base reaction Begin ch7: Chemical reactions and energy flows • First law of thermodynamics Next lecture: System vs. surroundings; Detecting heat; Predicting sign of heat; Detecting work; Amount of heat depends on whether there is work
BOSTON	BOSTON
UNIVERSITY	UNIVERSITY

Lecture 21 CH101 A2 (MWF 11:15 am) Fall 2018		Copyright © 2016 Dan Dill dan@b	u.edu
Redox reactions: Co Oxidation-reduction reactions ar	e a competition for e ⁻	ons	
Species that accepts $e^- \rightarrow$ is reduced \rightarrow It makes poss and	ible oxidation \rightarrow so is called the oxidizing a	agent	
$2 \operatorname{Ag}^+(aq) + \operatorname{Cu}(s) \rightleftharpoons 2 \operatorname{Ag}(s) + 0$	$\operatorname{Cu}^{2+}(aq)$		
Reduction "half reaction"?			
BOSTON UNIVERSITY			

Lecture 21 CH101 A2 (MWF 11:15 am) Fall 2018 Copyright © 2016 Dan Dill dan@bu.edu	Lecture 21 CH101 A2 (MWF 11:15 am) Fall 2018 Copyright © 2016 Dan Dill dan@bu.edu
First law of thermodynamics Energy, <i>U</i> , is exchanged between system and surroundings as heat, <i>q</i> , and work, <i>w</i> , $\Delta U = q + w$ Positive values increase energy of system $\Delta U = q + w$ q = heat flow into the system w = done on the system	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
BOSTON UNIVERSITY 37	BOSTON UNIVERSITY 38

