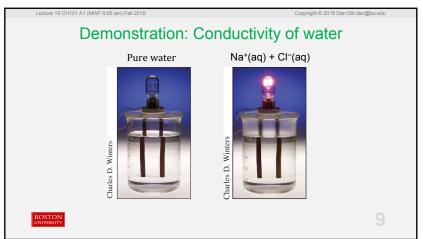
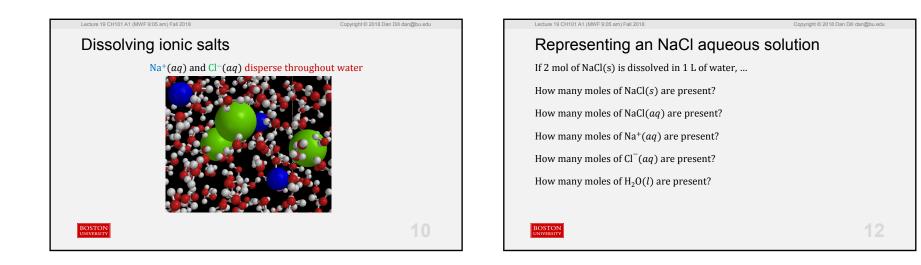
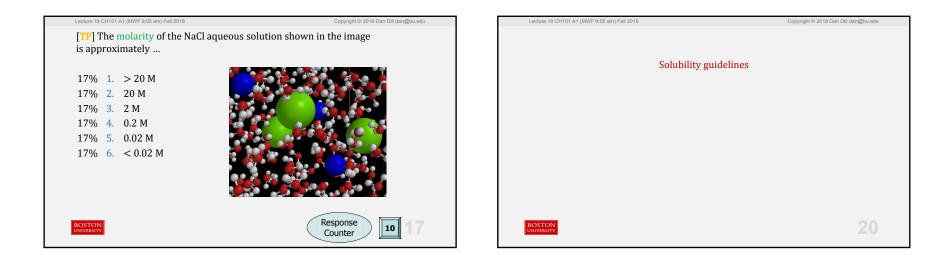

| Lecture 1 | 9 CH101 A1 (MWF 9:05 am) Fall 2018              |                  | Copyright © 2018 Dan Dill dan | @bu.edu |
|-----------|-------------------------------------------------|------------------|-------------------------------|---------|
| Re        | lative dispersion                               | : lone pairs     | vs cloud size                 |         |
|           |                                                 | Boiling point °C |                               |         |
|           | CH <sub>3</sub> CH <sub>3</sub>                 | -89              |                               |         |
|           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> | -42              | Lone pair dispersion          |         |
|           | CH <sub>3</sub> OCH <sub>3</sub>                | -24              | predominates                  |         |
|           |                                                 |                  |                               |         |
|           |                                                 |                  |                               |         |
|           |                                                 |                  |                               |         |
|           |                                                 |                  |                               |         |
|           |                                                 |                  |                               |         |
| BOSTO     |                                                 |                  |                               | 3       |

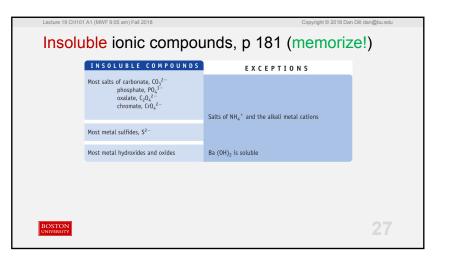

| Lecture 1 | 9 CH101 A1 (MWF 9:05 am) Fall 2018               |                  | Copyright © 2018 Dan Dill dan | @bu.edu |
|-----------|--------------------------------------------------|------------------|-------------------------------|---------|
| Re        | lative dispersion                                | : lone pairs     | vs cloud size                 |         |
|           |                                                  | Boiling point °C |                               |         |
|           | CH <sub>3</sub> CH <sub>3</sub>                  | -89              |                               |         |
|           | CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>  | -42              | Lone pair dispersion          |         |
|           | CH <sub>3</sub> OCH <sub>3</sub>                 | -24              | predominates                  |         |
|           | $\rm CH_3 CH_2 CH_2 CH_3$                        | -0.5             | Lone pair dispersion          |         |
|           | CH <sub>3</sub> CH <sub>2</sub> OCH <sub>3</sub> | +7.5             | predominates                  |         |
|           |                                                  |                  |                               |         |
|           |                                                  |                  |                               |         |
|           |                                                  |                  |                               |         |
| BOSTO     |                                                  |                  |                               |         |

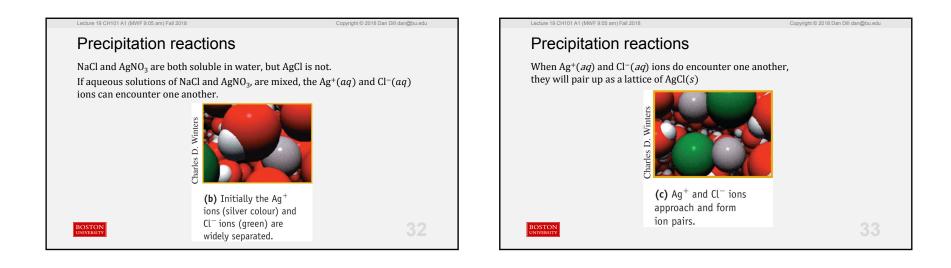

Copyright © 2018 Dan Dill dan@bu.edu

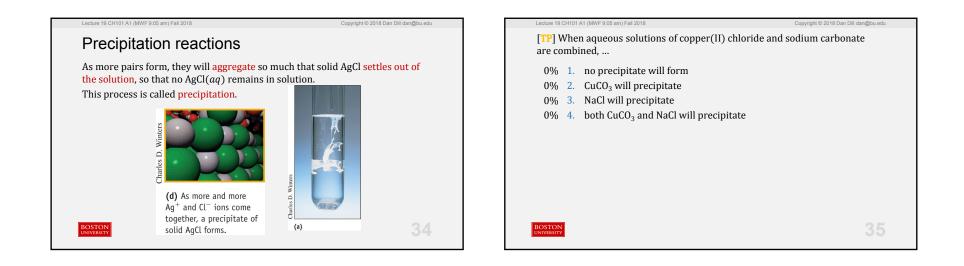
|                                                                                 | Boiling point °C |                                                                                      |  |
|---------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|--|
| $CH_3CH_3$                                                                      | -89              |                                                                                      |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub>                                 | -42              | Lone pair dispersion<br>predominates                                                 |  |
| CH <sub>3</sub> OCH <sub>3</sub>                                                | -24              |                                                                                      |  |
| $\rm CH_3 CH_2 CH_2 CH_3$                                                       | -0.5             | Lone pair dispersion<br>predominates<br>Cloud (bond pair)<br>dispersion predominates |  |
| $CH_3CH_2OCH_3$                                                                 | +7.5             |                                                                                      |  |
| CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub>                | +34.6            |                                                                                      |  |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | +36              |                                                                                      |  |

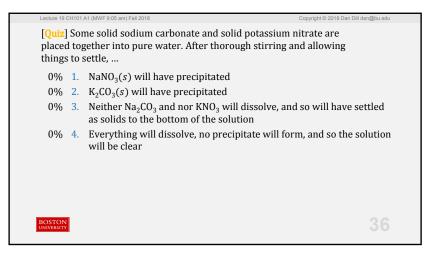




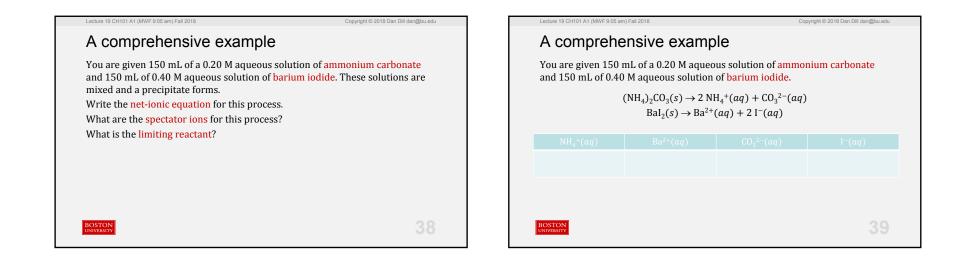



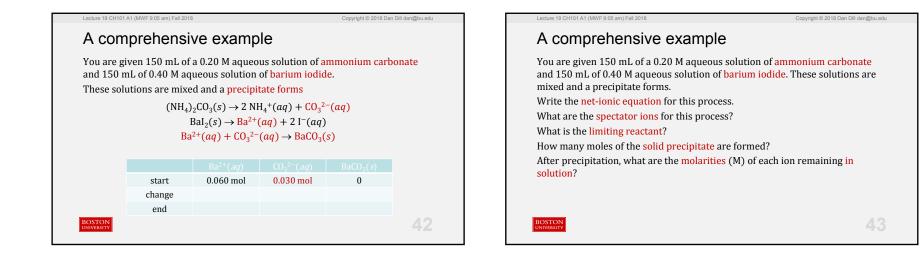



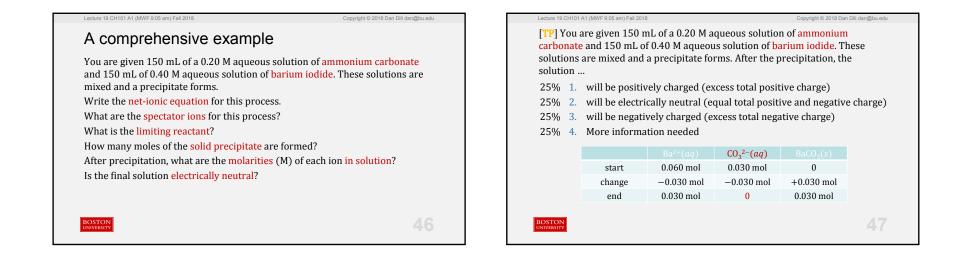

| Lecture 19 CH10 | 1 A1 (MWF 9:05 am) Fall 2018                                                                                                                                     | Copyright © 2018 Dan                                                          | Dill dan@bu.edu |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|
| Solub           | le ionic compoun                                                                                                                                                 | ds, p181 (memorize!                                                           | )               |
|                 | SOLUBLE COMPOUNDS                                                                                                                                                | 1                                                                             |                 |
|                 | Almost all salts of $\mathrm{Na^{+},K^{+},\mathrm{NH_{4}^{+}}}$                                                                                                  |                                                                               |                 |
|                 | Salts of nitrate, N0 <sub>3</sub> $^-$<br>chlorate, ClO <sub>3</sub> $^-$<br>perchlorate, ClO <sub>4</sub> $^-$<br>acetate, CH <sub>3</sub> CO <sub>2</sub> $^-$ |                                                                               |                 |
|                 |                                                                                                                                                                  | EXCEPTIONS                                                                    |                 |
|                 | Almost all salts of Cl $^-,~\rm Br^-,~\rm I^-$                                                                                                                   | Halides of Ag <sup>+</sup> , Hg <sub>2</sub> <sup>2+</sup> , Pb <sup>2+</sup> |                 |
|                 | Compounds containing F <sup></sup>                                                                                                                               | Fluorides of $Mg^{2+},Ca^{2+},Sr^{2+},Ba^{2+},Pb^{2+}$                        |                 |
|                 | Salts of sulfate, S042-                                                                                                                                          | Sulfates of Ca $^{2+}$ , Sr $^{2+}$ , Ba $^{2+}$ , Pb $^{2+}$                 |                 |
| BOSTON          |                                                                                                                                                                  |                                                                               | 26              |









| Lecture 19 CH10      | 01 A1 (MWF 9:05 am) Fall 2018 | Copyright © 2018 Dan Dill dan@bu.edu |
|----------------------|-------------------------------|--------------------------------------|
|                      | Concentrations before an      |                                      |
|                      |                               |                                      |
| BOSTON<br>UNIVERSITY |                               | 37                                   |



| You are given 150 m<br>and 150 mL of 0.40             | In L of a 0.20 M aqueo<br>M aqueous solution<br>$(NH_4)_2CO_3(s) \rightarrow 2 NII$<br>$BaI_2(s) \rightarrow Ba^{2+1}$ | Us solution of ammondation of barium iodide.<br>$H_4^+(aq) + CO_3^{2-}(aq)$       |                                                    |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|
| $NH_4^{+}(aq)$<br>2 × 0.20 M × 0.150 L<br>= 0.060 mol | $Ba^{2+}(aq)$<br>0.40 M × 0.150 L<br>= 0.060 mol                                                                       | $\frac{CO_3^{2-}(aq)}{0.20 \text{ M} \times 0.150 \text{ L}} = 0.030 \text{ mol}$ | $1^{-}(aq)$<br>2 × 0.40 M × 0.150 L<br>= 0.120 mol |
| BOSTON                                                |                                                                                                                        |                                                                                   | 40                                                 |



| A com      | prehensi        | ve examp                                             | le                                                                     |   |        | A cor    | nprehens         | ive examp                                                                                                                                                | le                   |            |       |
|------------|-----------------|------------------------------------------------------|------------------------------------------------------------------------|---|--------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------|
| 0          |                 | •                                                    | ous solution of a<br>of <mark>barium iodid</mark>                      |   | oonate |          |                  | f a 0.20 M aqueo<br>queous solution                                                                                                                      |                      |            | onate |
| These solu | utions are mixe | d and a <mark>precipi</mark>                         | tate forms                                                             |   |        | These so | olutions are mix | ed and a <mark>precip</mark> i                                                                                                                           | tate forms           |            |       |
|            |                 | $\operatorname{Bal}_2(s) \to \operatorname{Ba}^{2+}$ | $H_4^+(aq) + CO_3^2$<br>(aq) + 2 I <sup>-</sup> (aq)<br>(aq) → BaCO_3( |   |        |          | •                | $)_{2}CO_{3}(s) \rightarrow 2 \text{ NI}$<br>BaI <sub>2</sub> (s) $\rightarrow$ Ba <sup>2+</sup><br>a <sup>2+</sup> (aq) + CO <sub>3</sub> <sup>2-</sup> | $(aq) + 2 I^{-}(aq)$ |            |       |
|            |                 |                                                      |                                                                        |   |        |          |                  |                                                                                                                                                          | $CO_3^{2-}(aq)$      |            |       |
|            | start           | 0.060 mol                                            | 0.030 mol                                                              | 0 |        |          | start            | 0.060 mol                                                                                                                                                | 0.030 mol            | 0          |       |
|            | change          |                                                      |                                                                        |   |        |          | change           | -0.030 mol                                                                                                                                               | -0.030  mol          | +0.030 mol |       |
|            | end             |                                                      |                                                                        |   |        |          | end              | 0.030 mol                                                                                                                                                | 0                    | 0.030 mol  |       |
| BOSTON     |                 |                                                      |                                                                        |   | 44     | BOSTON   |                  |                                                                                                                                                          |                      |            |       |



|        | 01 A1 (MWF 9:05 am) Fall 2018 |                                                            | Copyright © 2018 Dan I | Dill dan@bu.edu |
|--------|-------------------------------|------------------------------------------------------------|------------------------|-----------------|
| A cor  | nprehensive                   | example                                                    |                        |                 |
|        | 0                             | 0 M aqueous solution<br>Is solution of <mark>barium</mark> |                        | onate           |
|        |                               | d a precipitate forms<br>the ions remaining in             |                        | on, the         |
|        |                               |                                                            |                        |                 |
|        | $NH_4^+(aq)$                  | 0.060                                                      | 0.060 "+"              |                 |
|        | I-( <i>aq</i> )               | 0.120                                                      | 0.120 "—"              |                 |
|        | $Ba^{2+}(aq)$                 | 0.030                                                      | 0.060 "+"              |                 |
|        | Du (uq)                       |                                                            |                        |                 |
|        | Total                         |                                                            | 0                      |                 |
| BOSTON |                               |                                                            | 0                      |                 |