20% $2.$ about 10 s Water, $H_2O(\ell)$ 4.18 20% $3.$ about 20 s Ethanol, $C_2H_5OH(\ell)$ 2.44 20% $4.$ about 40 s Diethyl ether, $C_2H_5OC_2H_5(\ell)$ 2.37	
20% 3. about 20 s Ethanol, $C_2H_5OH(\ell)$ 2.44 20% 4. about 40 s Diethyl ether, $C_2H_5OC_2H_5(\ell)$ 2.37	
20% 4. about 40 s Diethyl ether, C ₂ H ₅ OC ₂ H ₅ (<i>l</i>) 2.37	
Hexane, $C_6H_{14}(\ell)$ 2.27	
Acetone, CH ₃ COCH ₃ (ℓ) 2.17	
Carbon disulfide, CS₂(ℓ) 1.00	
Bromine, Br ₂ (ℓ) 0.47	

Lecture 13 CH101 A1 (MWF 9:05 am) Wednesday, October 3, 2018 Determined of water, chemistry in water 4. Heat versus temperature 4. Heat capacity 4. Heat capacity 5. Varior pressure and boiling Mext lecture: intermolecular forces; hydrogen bonding; polarity; dipole-dipole vs. temporary dipole (dispersion) Representative questions: 6.1, 6.2, 6.3, 6.4, 6.9, 6.12, 6.17, 6.19, 6.22, 6.23

Lecture 13 CH101 A1 (MWF 9:05 am) Fall 2018 Copyri	ght © 2018 Dan Dill dan@bu.edu	Lecture 13 CH10	1 A1 (MWF 9:05 am) Fall 2018	Copyright © 2018 Dan Dill dan@bu.edu	
Specific heat capacity		Spec	fic heat capacity		
Moving hand from cold water (0 °C) to warm water (20 °C), sensation was "hot"		$\Delta H = $	$constant \times (T_{final} - T_{initial}) = constant$ $nstant = mass \times specific heat capacity$	$\times \Delta T$	
Moving hand from hot water (40 °C) to warm water (20 °C), sensation was "cold"		$\Delta H =$	$m c \Delta T$	$c(1 K^{-1} a^{-1})$	
How to express results in terms of temperature?			Water, H ₂ O(ℓ)	4.18	
Answer: "heat" ΔH = constant × ($T_{\text{final}} - T_{\text{initial}}$) = constant × (L	Δ <i>T</i>		Ethanol, $C_2H_5OH(\ell)$ Diethyl ether, $C_2H_5OC_2H_5(\ell)$	2.44 2.37	
$constant = heat capacity = mass \times specific heat capacity$	capacity = mass × specific heat capacity Hexane, $C_6H_{14}(\ell)$ Acetone, $CH_3(COCH_3(\ell))$		Hexane, $C_6H_{14}(\ell)$	2.27	
		2.17			
			Carbon disulfide, $CS_2(\ell)$	1.00	
			Bromine, $Br_2(\ell)$	0.47	
BOSTON UNIVERSITY	5	BOSTON UNIVERSITY		6	

20% 1.	about 5 s	Substance	$c (J K^{-1} g^{-1})$
20% 2.	about 10 s	Water, $H_2O(\ell)$	4.18
20% 3.	about 20 s	Ethanol, C₂H₅OH(ℓ)	2.44
20% 4	about 40 s	Diethyl ether, $C_2H_50C_2H_5(\ell)$	2.37
20% 5	about 80 a	Hexane, $C_6H_{14}(\ell)$	2.27
2070 J.	about 00 a	Acetone, $CH_3COCH_3(\ell)$	2.17
		Carbon disulfide, $CS_2(\ell)$	1.00
		Bromine, $Br_2(\ell)$	0.47

