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Atoms interact by merging waves

AO + AO —» 2 MOs




Bonding in diatomic molecules

Relative AO phase determines MO character
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Bonding in diatomic molecules

o MO’s have cylindrical symmetry

: S W W
: we can rotate

Antibondi bital designated o
ntibonding orbitals are designate about this axis

witha * e.g. g%, orm# i :
without changing
[y T AR U W E‘_\___ the MOs

both MOs have rotational symmetry about the axis through the two nuclei
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Bonding in diatomic molecules

1so and 1so™

nodal plane

combine i O
out-of- phase i

the two 1s orbitals combining out-of-phase to give an antibonding orbital

combine
in-phase

the two 1s orbitals combining in-phase to give a bonding orbital
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Bonding in diatomic molecules

1so and 1so™

NodaT plane
a*-molecular orbital
(antibonding)

—>.

o-molecular orbital
(bonding)

Energy

A

Mahaffy et al., Figure 10.20

BOSTON
UNIVERSITY



Bonding in diatomic molecules

1s molecular orbitals:
http://quantum.bu.edu/CDF/101/1sMolecularOrbitals.cdf
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Bonding in diatomic molecules

o Is “bonding” and ¢ is “antibonding”

N Gtemmmooee --- G -----------
we can rotate

Antibondi bital designated : .
ntibonding orbitals are designate about this axis

witha * e.g. o*, orm* ) .
without changing
o T T ____6\___ the MOs

both MOs have rotational symmetry about the axis through the two nuclei
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Bonding in diatomic molecules

Bonding PE, KE and total E

E

O

Attractive (< 0) PE is opposed by repulsive (> 0) KE.
Molecular size is at minimum of total E.
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Antibonding PE, KE and total E

Yy
L

Repulsive (> 0) PE enhanced by repulsive (> 0) KE.
No minimum of total E --- atoms fly apart!
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Bonding and antibonding total £
E

©

S R

S

What matters are the total bonding and antibonding E at the bonding
minimum versus the AO energies---the energy at infinite separation.
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Correlation diagrams ...

E £
MOantibond
& ©
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MOpBond - "
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... summarize

bonding and antibonding effects
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Filling of MO’s — H, MO configuration

49
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- O1s
£ Molecular d,
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Atomic 5 T l b Atomic
O1s

orbital orbital

Mahaffy et al., Figure 10.20

BOSTON
UNIVERSITY



Filling of MO’s — He, MO configuration

Atomic Molecular Atomic

orbital orbitals orbital
Energy
A
1l
f’ 015 \
] L
: I‘
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[} L)
E' ,\_
He atom " He atom
1s [t 1s
O1s

He, molecule
(015)2(015)2

Mahaffy et al., Figure 10.21
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Filling of MO’s — Li, MO configuration

Energy y

g
A =

2s / \ 2s

1s / 1s
Li : T l CTls‘,’, Li
Atomic ' Atomic
orbital L1z orbitals

Molecular orbitals

Mahaffy et al., Figure 10.22




Bond order

(bonding e’s — antibonding e-
’'s)/2

Division by two is because a single bond shares a pair of
electrons

H,* = H-H* — bond order = 1/2
H, = H:H — bond order = 1
He, — bond order = 0

He,* — bond order = ...?
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Bonding in diatomic molecules

1s (and 2s) o and o~

. e T S
’ we can rofate

Antibondi bital designated : .
ntibonding orbitals are designate about this axis

witha * e.g. o*, orm* ) .
without changing
o T T ____6\___ the MOs

both MOs have rotational symmetry about the axis through the two nuclei
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2p,0 and 2p,0”

noda] plane
combine !
out-of-phase : symmetrical

2p AO 2p AD 2pc” MO about this axis.

the end-on overlap of two 2p atomic orbitals to give the prj* antibonding MO

combine
D ) = @ Sy
2p AOD 2p AO in-phase 2pg MO symmetrical

. _ . _ about this axis.
the end-on overlap of two 2p atomic orbitals to give the 2pag bonding MO
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Bonding in diatomic molecules

2p,0 and 2p,c*

Energy Nodal plane

| — QP

o3, molecular orbital
(antibonding)

—~ 030

molecular orbital
(bonding)

Mahaffy et al., Figure 10.23
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Bonding in diatomic molecules

2p,0 (lower) and 2p,0™ (upper)

2p, molecular orbitals:
http://quantum.bu.edu/CDF/101/2pMolecularOrbitals.cdf
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2p, 1T and 2p,1T*

— -
nodal plane
combine i
out-ofphase i no symmetry
about this axis.
If we rotate,
2p AO 2p AD Zpr* MO the phase changes

the side-on overlap of two 2p atomic orbitals to give the 2pn* antibending MO

E— -
combine o
—PREEEE P S C --------
in-phase no symmetry
about this axis.
If we rotate,
2p AD 2p AD 2pm MO the phase changes

the side-on overlap of two 2p atomic orbitals to give the 2prn bonding MO
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2p, 1T and 2p,m”

Energy Nodal plane

. 3

73,, molecular orbital
(antibonding)

3

2p, 2p, T,p, Molecular orbital
(bonding)

A

Mahaffy et al., Figure 10.24
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Homonuclear diatomics, up to N,

Energy 2
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D
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Mahaffy et al., Figure 10.25
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Homonuclear diatomics, after N,

1 2pa .
2% 2pnt &
3x2p <, } 3% 2
2% 2pm ' ‘— _
n 2po —_—
=
5
EL —_—
5 «
& .
2 e
o 2 ) - g
'E] ~ -
= ... -
% &
s 250
T e the 1sg and 1so* MOs are much lower in energy than the other MOs
lsg® —
g ——= T 1s
atomic orbitals 1- e JPrtiee agtomic orbitals
on atom A 50 on atom B

molecular orbitals resulting from the combination of atomic ombitals
UNIVERSITY



Bonding in diatomic molecules

Homonuclear diatomics

Li, B, C; N, 0, F2
L] L] H = L] B o
b 1 i
[ ] [ ] [ ] 1 iy e
R 1 ik ik il

Laird, University Chemistry, Figure 3.4
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Which AO’s combine?

SOE: Symmetry, Overlap, Energy

« Symmetry: Which AO’s can combine to form MO’s?

« Overlap: Which AO’s combine with the greatest bonding/antibonding
effect?

« Energy: How does relative AO energy affect composition of MO’s?
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Symmetry: Net overlap or not?

* For a pair of AO’s to give a (bonding/antibonding) pair of MO’s, there
must be net overlap (in-phase or net out-of-phase).

 If in-phase and out of phase overlap exactly balance, the AO’s remain
uncombined, as nonbonding orbitals.

BOSTON
UNIVERSITY



Overlap: Greater the better

« The more net overlap, the greater the bonding/antibonding effect.
« Core AQO’s have least overlap

+ Valence AQO’s have greatest overlap
* Bonding due to MO’s made from valence AO’s
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Energy: Closer the better

 The closer AO’s are in energy, the greater the bonding/antibonding effect.

« If AO’s have same energy (identical atoms, homonuclear bond), MO’s will be
50% of each AO.

« If AO’s have different energy (different atoms, heteronuclear bond), ...
« Bonding MO — more lower energy AO
* Antibonding MO — more higher energy AO
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Energy: Closer the better
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increasing energy

combine D QD .
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molecular orbitals from elements of different electronegativity



Energy: Closer the better
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Energy: Closer the better

Energies of ADs both the same

oo e
won .

LY ¢ ADan
atam & atom B

a1 l" !
[ [

larga interaction botwean A0z

bending MO much lowar in anengy
than AQs

aritibonding MO is much higher in
tha anergy than tha ADs

beth ADs contribute equally to

tha MOs

alactrons in bonding MO ara shared
aqually between the two atoms

bend batwaan A and B would
classically be described as purely
covalant

aasiestto braak bond into twe
radicals (hemaolytic fission).
Hatarolytic fission of bond is
possible and could give eithar

At and B or A~ and B*

AQ on atom B is a little lower
in energy than AOQ on atom A

less interaction batwaan ADs

bending MO is lowered only by a
small amount ralative to A0 on
atom B

aritibonding MO is raisad in anergy
by enly a small amourt relative to
AD on atom B

tha AD on B contributas more to the
bonding MO and the AD on &
alactrons in bonding MO ara shared
betwaen atoms but are associated
mora with atom Bthan A

bend batwaan A and B is covalent
but there is also some electrostatic
{ienic) attraction betweaen atoms
aasiestto break bond into two ions,
A% and B, although itis also
possible to give two radicals

AQ on atom B is a lot lower
in energy than AQ on atom A

4.

¥,
Ay on
atom A

]

A0 an
lons S B

AD= ara too far apart inenargy to
interact

tha filled orbital on the anion has tha
sama anergy as the AC on atom B

tha ampty orbital onthe cation has
sama anergy as the AD on atom A

only cna AQ contributes to each 'MO”

alactrons in tha filled orbital are
located only on atom B

bnd batwaan A and Bwould
classically be described as purely
iznic

compound already exists as jons
Atand B




Practice

Questions on Symmetry, Overlap, Energy
http://goo.gl/oYEf3b
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