# **Computer Lab Report Form #5: Waves Investigations**

Student's Name: \_\_\_\_\_

BU ID\_\_\_\_\_

Lab Section Day/Time/TF\_\_\_\_\_

# **Investigation 1: Waves on a Cable**

# **<u>1.1 Harmonics</u>**

1. Find the wavelength for each of the following harmonics (page 4):

| Harmonic number | Wavelength (m) |
|-----------------|----------------|
| 1               |                |
| 2               | 1.0            |
| 3               |                |
| 5               |                |

#### 2. Please, complete the following table (page 5):

| harmonic number | n (number of loops) |
|-----------------|---------------------|
| 1               |                     |
| 3               |                     |
| 6               |                     |

3. Please, write a formula that relates the wavelength of a harmonic mode to its number of loops. Your formula (page 6):

4. Check your formula by completing the following table (page 6):

| n (number of loops) | λ (m)  |
|---------------------|--------|
| 2                   |        |
| 3                   | 0.6667 |
| 4                   | 0.50   |
| 6                   |        |
| 7                   |        |

# **1.2 Definition of the Amplitude of a Wave**

Complete the following table for the displayed amplitudes for the indicated normal modes (page 7):

| Ν | A (m) |
|---|-------|
| 1 |       |
| 2 | 0.10  |
| 3 |       |
| 6 |       |

### **1.3 Definition of Period of a Wave**

### Please answer the following question (page 7):

For the fundamental mode the period is  $T = \_\_\_$  s.

### **1.4 Relationship Between Period and Frequency**

#### 1. Find the period and frequency for the following harmonics (page 8):

| Ν | T (s) | ν (Hz) |
|---|-------|--------|
| 1 |       |        |
| 2 |       |        |
| 3 |       |        |
| 4 |       |        |

2. What numerical pattern do you detect in the frequencies as a function of the (harmonic) loop number (page 8):

# **1.5 Dispersion Relationship for Waves on a Cable**

1. What properties of a cable determine the speed of a wave on it? (page 9)

2. What is the speed c of a wave on the cable? c = (page 10)

# **Investigation 2: Energy of Waves on a Cable**

1. On the graph space provided below, draw the appearance of the whole length of the cable when it has maximum potential energy (page 14):



2. Please answer whether the velocities of the points of the cable, at the instance of maximum potential energy, are at a minimum or maximum (page 14)? Circle the correct answer below:

at minimum

at maximum

3. On the graph space provided below draw the appearance of the whole length of the cable when it has maximum kinetic energy (page 15):



4. Please answer whether the velocities of the points of the cable, at the instance of maximum kinetic energy, at a minimum or maximum (page 15))? Circle the correct answer below:

at minimum

at maximum

5. Whether or not the energy of the harmonic motion is uniformly distributed over the length of the cable (page 16))? )? Circle the correct answer below:

uniformly

non uniformly

6. Circle the right answer below (page 16):

a) For the n = 1 harmonic, the region with maximum energy density is centered about x = ?

0 m 1/2 m 1/4 m

b) For the n = 4 harmonic, a region with minimum energy density is centered about x = ?

1/8 m 2/3 m 1/4 m

#### 7. Which harmonics are represented on page 18?

(left top) n=; (right top) n=; left bottom) n=; (right bottom) n=

# **Investigation 3: Harmonics of a Square Membrane**

1. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately (page 22):

| Harmonic (x, y) | n <sub>x</sub> | n <sub>y</sub> |
|-----------------|----------------|----------------|
| (1, 1)          |                |                |
| (2, 1)          |                |                |
| (4, 1)          |                |                |
| (3, 1)          |                |                |

2. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately( page 23):

| Harmonic (x, y) | n <sub>x</sub> | n <sub>y</sub> |
|-----------------|----------------|----------------|
| (1, 2)          |                |                |
| (1, 4)          |                |                |
| (1, 3)          |                |                |
| (1, 5)          |                |                |

3. Enter the number of loops that you observe for each harmonic in the table. Count the loops in the x and y directions separately(page 23):

| Harmonic (x, y) | n <sub>x</sub> | n <sub>y</sub> |
|-----------------|----------------|----------------|
| (2, 2)          |                |                |
| (3, 4)          |                |                |
| (2, 3)          |                |                |
| (5, 2)          |                |                |

4. How does the frequency of oscillation depend on the number of loops  $n_x$  and  $n_y$  (page 25)?

| $(\mathbf{n}_{\mathbf{x}},\mathbf{n}_{\mathbf{y}})$ | ν (Hz) |
|-----------------------------------------------------|--------|
| (1, 1)                                              |        |
| (2, 1)                                              | 2.24   |
| (2, 2)                                              |        |
| (3, 4)                                              |        |
| (6,8)                                               | 10     |
| (5,12)                                              |        |

5. Write the measured frequency v of oscillation for the following modes (page 25):

6. Write a formula for the frequency of a harmonic as a function of  $n_x$  and  $n_y$ ? (page 25)

### 7. Complete the following table (page 28).

| ( <b>n</b> <sub>x</sub> , <b>n</b> <sub>y</sub> ) | $\Delta \mathbf{x} (\mathbf{m})$ | Δy (m)                  | $\frac{\mathbf{E}(\mathbf{x}_0,\mathbf{y}_0) \Delta \mathbf{x} \Delta \mathbf{y}}{(\mathbf{j})}$ | E <sub>Mode</sub> (j) |
|---------------------------------------------------|----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|-----------------------|
| (1,1)                                             | $x_0 = 0.5, \Delta x =$          | $y_0 = 0.5, \Delta y =$ |                                                                                                  |                       |
|                                                   | 0.05                             | 0.05                    |                                                                                                  |                       |
| (3,1)                                             | $x_0 = 0.3, \Delta x =$          | $y_0 = 0.5, \Delta y =$ |                                                                                                  |                       |
|                                                   | 0.05                             | 0.05                    |                                                                                                  |                       |
| (2,4)                                             | $x_0 = 0.25, \Delta x =$         | $y_0 = 0.375, \Delta y$ |                                                                                                  |                       |
|                                                   | 0.05                             | = 0.05                  |                                                                                                  |                       |

# 8. Complete the following table (page 29).

| Mode 1<br>(n <sub>x1</sub> , n <sub>y1</sub> ) | Frequency 1<br>v <sub>1</sub> (Hz) | Mode 2<br>(n <sub>x2</sub> , n <sub>y2</sub> ) | Frequency 2<br>v <sub>2</sub> (Hz) | Frequency of Superposed<br>Modes<br>v <sub>super</sub> (Hz) |
|------------------------------------------------|------------------------------------|------------------------------------------------|------------------------------------|-------------------------------------------------------------|
| (1, 6)                                         |                                    | (1,9)                                          |                                    | vsuper (220)                                                |
| (1, 8)                                         |                                    | (1, 10)                                        |                                    |                                                             |
| (1,9)                                          |                                    | (1, 10)                                        |                                    |                                                             |

9. Write an expression for  $v_{super}$  in terms of  $v_1$  and  $v_2$ .(page 29):