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We have learned how to find wave functions and energies by adjusting the total energy so that the 
wave function decays to zero in forbidden regions of infinite width or infinite potential energy.  In 
numerical applications of quantum mechanics in chemistry, an alternative, flexible method of solving 
the Schrödinger equation is to approximate the wave function for a particular system in terms of 
those for a similar, so-called model system. A very nice feature of this approach is that the accuracy 
of the approximation can be systematically improved, by increasing the number of model wave 
functions used in the approximation. In this workshop we'll explore this method, for the example of a 
particle confined to an infinite well with a sloping bottom. The model system will be the 
corresponding infinite well with a flat bottom.

Part 1

à A curved infinite well

The goal of this workshop is to determine the wave function, Y1, and energy, E1, for the ground state 
of a particle in an infinite well that has a bottom that curves up toward the right wall. Here is a plot of 
the curved infinite square well, and the corresponding flat infinite square well.
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Figure 1. Distorted infinite square well potential energy (thick line) and corresponding undistorted infinite well potential energy (thin 
line). The thick horizontal line is the ground state energy, 12.08, of the distorted infinite well and the thin horizontal line is the 
ground state energy, 9.869, of the undistorted infinite well. Energy and length are in dimensionless units.

The distortion is H2 xL5 in dimensionless units.



1. We know that the ground state energy of a particle of mass m confined in a infinite 
square well of width L is h2 ê H8 m L2L. If we assume the particle is an electron, determine 
the units of energy if the width is 2.0 Þ. Answer 1.5 μ 10-18 J.

2. Show that this means that the distorted well potential energy rises from 0 J at the left 
wall to 48 μ 10-18 J at the right wall.

à Exact ground state energy wave function

So that we have a point of comparison, we can determine the exact energy and wave function of the 
distorted and undistorted well by solving the curvature form of the Schrödinger equation, by 
adjusting the total energy so the wave function has a single loop and decays to zero at each edge of 
the infinite well. 

The result is that the ground state energy of the distorted square well, E1 = 12.1, is about 20% higher 
than that of the undistorted well, E0 = 9.9.

3. Explain why the ground state energy of the distorted well must be higher than that of the 
undistorted well.

Here is a plot of the ground state wave function, Y1HxL (thick curve), of the distorted and the wave 
function, y1HxL =

è!!!2  sinHp xL (thin curve), of the undistorted well.
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Figure 2. Ground state wave function, Y1HxL (thick curve), of the distorted well and the wave function, y1HxL =
è!!!!2  sinHp xL (thin 

curve), of the undistorted well.

Here is a plot of the curvature, „2 Y1 ê „ x2, of the exact ground state wave function.
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Figure 3. Curvature, „2 Y1 ê „ x2 of the exact ground state wave function.

4. From the plot of the potential energy and the total energy, does the distorted well have a 
forbidden region between the infinite potential energy wall at x = 0 and x = 1? If so, 
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indicate the corresponding classical turning point and the inflection point in the wave 
function.

Here is a plot of the difference, Y1HxL - y1HxL, between the exact and the model system ground state 
wave functions.
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Figure 4. Wave function difference, Y1HxL - y1HxL.

5. Account for the difference in these two wave functions, in terms of the difference in the 
corresponding potential energies.

à First order approximation to energy

An alternative to using the curvature form of the Schrödinger equation to determine the energy and 
wave function of the distorted well, is to solve for these quantities by expanding in the basis of wave 
functions of the undistorted well. The general form of this expansion for wave function, Ya, of the 
distorted well with a loops and energy Ea is

Ya = ‚
j

y j c j ,a.

The simplest approximation to the ground state wave function, Y1, of the distorted well is to include 
just a single term,

Y1 = ‚
j

y j c j ,1 º y1 c1,1.

Since the wave functions of the undistorted well are normalized, we can ensure that Y1 is normalized 
by setting the coefficient c1,1 equal to one. This means that at this level of approximation, we assume 
the distortion in the potential energy does not change the wave function from that of the undistorted 
potential.

Once we have an approximation to the wave function, we can use the Schrödinger equation to 
determine the corresponding approximation to the energy. 

H Y1 º H y1 º E1 y1

Here is how to work with this approximate Schrödinger equation. Because y1 is not really an 
eigenfunction of H , the result of operating with H  on y1 will not be proportional to y1 and so we 
have no proportionality that we can use to identify the approximate eigenvalue. 

Instead, what we can do is multiply both sides of the second approximate equality by y1
* and then 

integrate over the well. The result is
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‡
0

1
y1 HxL* H  HxL y1 HxL „ x º E1

That is, the first approximation to the energy is

E1 º E1
H1L = ‡

0

1
y1 HxL* H  HxL y1 HxL „ x

To evaluate the integral it is very helpful to express the Hamiltonian in terms of the Hamiltonian, 
H H0L, of the undistorted potential, that is, to write H = H H0L + HH - H H0LL .  The difference H - H H0L is 
called the perturbation to the undistorted hamiltonian.

6. Show that since the perturbation, H - H H0L, between the distorted well and the 
undistorted well is the potential energy, H2 xL5, the first approximation to the energy can be 
expressed as

E1
H1L = e1 + ‡

0

1
y1 HxL* H2 xL5 y1 HxL „ x

where we use the symbol e j = j2 h2 ê H8 m L2L for the energies of the undistorted well.

7. The integral Ÿ0
1

y1 HxL* H2 xL5 y1HxL „ x evaluates to 2.512. Evaluate, in dimensionless 
units, the first approximation to the energy of the distorted well. Answer: 12.38.

8. Evaluate the percentage error in the first approximation to the energy. Answer: 2.48%

à Accuracy of the first order approximation to energy

The net result of the simplest, so-called first order approximation scheme is that we can estimate the 
ground state energy, E1, of a system in terms of the energy, e1, and ground state wave function, y1, 
of a model system as

E1 º e1 + ‡
0

1
y1 HxL* HH - H H0LL y1 HxL „ x,

where the perturbation H - H H0L is the operator corresponding to the difference between the actual 
system and the model system. In the example above, H - H H0L = H2 xL5. 

We have seen that this very simple approximation does a very good job in predicting the energy of 
the system, in that the error is only 2.48%. Let's see how this scheme works for a modified version of 
the distorted well.

9. Show that the first order estimate of the ground state energy of an infinite well with 
distorted potential energy H - H H0L = H4 xL5 is E1 º E1

H1L = 90.27. 

The exact ground state energy is E1 = 29.63. This means that now the percentage error is 502%! 
Indeed, the zero order energy—the energy of the undistorted potential, 9.86 units—is closer to the 
exact energy than is the first order approximation. Let's see if we can understand why now the error 
in the first order approximation to the energy is so much greater
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Here is a plot of the new distorted potential energy and that of the undistorted well, together with the 
corresponding ground state energies, shown as horizontal lines.
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Figure 5. Modified (thick line) and original (thick, dashed line) distorted infinite square well potential energy and corresponding 
undistorted infinite well potential energy (thin line). The horizontal lines are the ground state energy, 29.63, of the modified 
distorted infinite well (thick line) and the ground state energy, 12.08, of the original distorted infinite well (thick, dashed line). The 
thin horizontal line is the ground state energy, 9.869, of the undistorted infinite well. Energy and length are in dimensionless units.

Here is a plot of the ground state wave function, Y1HxL (thick curve), of the modified distorted well, 
and the wave function, y1HxL =

è!!!2  sinHp xL (thin curve), of the undistorted well.
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Figure 6. Ground state wave function, Y1HxL (thick curve), of the modified distorted well, with potential energy H4 xL5, and the wave 
function, y1HxL =

è!!!!2  sinHp xL (thin curve), of the undistorted well.

10. From the plot of the potential energy and the total energy, does the modified distorted 
well have a forbidden region between the infinite potential energy wall at x = 0 and x = 1? 
If so, indicate the corresponding classical turning point and the inflection point in the wave 
function.

11. Compare the exact ground state wave function for the original distorted potential 
energy, H2 xL5, and the new distorted potential energy, H4 xL5. Based on your comparison 
can you anticipate when the first order approximation to the energy will work well and 
when it will not?

à Second order approximation to the energy; first order approximation 
to the wave function

The next simplest approximation to the ground state wave function, Y1, of the distorted well is to 
include two terms in the expansion of the distorted well wave function,

Y1 = ‚
j

y j c j ,1 º y1 c1,1 + y2 c2,1.
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As before, once we have an approximation to the wave function, we can use the Schrödinger 
equation to determine the corresponding approximation to the energy,

H Y1 º H  8 y1 c1,1 + y2 c2,1< º E1 8y1 c1,1 + y2 c2,1<.

At this point, though, we have to proceed differently, since we do not know the relative contributions 
of the two undistorted wave functions, that is, since we do not know the expansion coefficients c1,1 
and c2,1.

The first step is to transform the Schrödinger equation into two algebraic equations, that we can then 
try to use to determine the unknown expansion coefficients. One of the "secret handshakes" of 
quantum mechanics is the way to carry out the transformation to algebraic equations. This is done by 
first multiplying the approximate Schrödinger equation by y1

* and then integrating over the potential 
energy well. 

12. Show that the result of these steps is 

H1,1 c1,1 + H1,2 c2,1 º E1 c1,1,

in terms of  the matrix elements H j,k = Ÿ0
1

y j HxL* H ykHxL „ x.

In a similar way we can get another algebraic equation using y2
*,

H2,1 c1,1 + H2,2 c2,1 º E1 c2,1.

The next step is to get numerical values for the matrix elements H j,k . To do this we need the integrals

‡
0

1
y1 HxL* H2 xL5 y2 HxL „ x = -2.920

and

‡
0

1
y2 HxL* H2 xL5 y2 HxL „ x = 4.397,

where the values are in dimensionless energy units.

13. Determine the values of H1,1, H1,2, H2,1 and H2,2, in dimensionless energy units. 
Answer: 12.38, -2.92, -2.92 and 43.87.

14. Use these values of H j,k, to reduce the Schrödinger equation to the two algebraic 
equations

12.38 c1,1 - 2.92 c2,1 = E1 c1,1,

and

-2.92 c1,1 + 43.87 c2,1 = E1 c2,1.
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à Ensuring that we can solve the approximation: The secular equation 
and the second order approximation to the energy

Using matrix notation, the algebraic equations of the second order approximation can be written 
compactly as

HH - Ea IL c =
Ä
Ç
ÅÅÅÅÅÅÅÅ
i
k
jjj

H1,1 H1,2

H2,1 H2,2

y
{
zzz - Ea 

i
k
jjj

1 0
0 1

y
{
zzz
É
Ö
ÑÑÑÑÑÑÑÑ 
i
k
jjj

c1,a

c2,a

y
{
zzz =

i
k
jjj

12.38 - Ea -2.92
-2.92 43.87 - Ea

y
{
zzz 
i
k
jjj

c1,a

c2,a

y
{
zzz = 0.

15. Carry out the matrix multiplication in the last equality to show that this equation is 
equivalent to the two algebraic equations, with E1 replaced by Ea and the corresponding 
second index on the expansion coefficients by a.

We'll see in a moment why we have replaced E1 with the more general symbol Ea, and 
correspondingly introduced the subscript a in the expansion coefficients.

If we could find the inverse matrix, HH - E a IL-1, then since HH - Ea IL-1 HH - Ea IL = I, we would 
have the result

HH - Ea IL-1 HH - E a IL c = I c = c = 0.

That is, each of the expansion coefficients, and so the approximation to the wave function Ya, would 
vanish! To prevent this, we need to not be able to find the inverse matrix, HH - E a IL-1.

It turns out that the inverse of a matrix is proportional to the inverse of its determinant. So, if we can 
arrange for the determinant of the matrix H - Ea I to be equal to zero, then the inverse matrix will be 
infinite, and so effectively it will be undefined for the purposes of numerical computation. 

The determinant, » H - E a I », of the matrix H - E a I is

ƒƒƒƒƒƒƒƒƒ
12.38 - Ea -2.92

02.92 43.87 - Ea

ƒƒƒƒƒƒƒƒƒ
= H12.38 - EaL μ H43.87 - EaL - H-2.92L μ H-2.92L

This is a quadratic equation in the unknown energy, Ea. Setting this quadratic equal to zero, we can 
solve for the two values of Ea that satisfy the requirement that the matrix H - E a I not have an 
inverse.

16. Show that the two values of the energy are Ea=1 = 12.11 and Ea=2 = 44.14.

What we have done is to find the two values of Ea for which we will not be able to invert the matrix 
H - Ea I, and so for which the values of the coefficients c1,a and c2,a will not vanish. The energies 
are found by solving » H - Ea I » = 0. This is known as the secular equation. Finding the values of 
energy that solve the secular equation is how energy quantization arises in finding wave functions by 
expanding in a basis.

The exact value of the energy of the ground state of the distorted well is E1 = 12.08, and that the first 
order approximation to the ground state energy is 12.38. The first, lowest energy that solves the 
secular equation, that is, the second order approximation to the energy of the ground state, is 
Ea=1 = 12.11, and so the second approximation to the energy is an improvement over the first order 
approximation to the energy, and now quite close to the exact energy, differing by only 0.03 
diemsnsionless units (about 0.25 %).
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Part 2

à Solving the first order approximation to the wave function

At this point we know that

i
k
jjj

12.38 - Ea -2.92
-2.92 43.87 - Ea

y
{
zzz 
i
k
jjj

c1,a

c2,a

y
{
zzz = 0

has a non-trivial solution (that is, other than the expansion coefficients all being equal to zero) for 
two special values of the energy, Ea. 

17. Show that the equations for a = 1 are

i
k
jjj

H1,1 - E1 H1,2

H2,1 H2,2 - E1

y
{
zzz i
k
jjj

c1,1

c2,1

y
{
zzz = i

k
jjj

0.269 -2.92
-2.92 31.8

y
{
zzz i
k
jjj

c1,1

c2,1

y
{
zzz = 0

and that the equations for a = 2 are

i
k
jjj

H1,1 - E2 H1,2

H2,1 H2,2 - E2

y
{
zzz 
i
k
jjj

c1,2

c2,2

y
{
zzz =

i
k
jjj

-31.8 -2.92
-2.92 -0.269

y
{
zzz 
i
k
jjj

c1,2

c2,2

y
{
zzz = 0

The next step is to convert these two homogeneous algebraic equations into inhomogeneous 
equations. The way to do this is in two steps. The first step is to set one of the coefficients, say the 
first one, to the value one. The result is

i
k
jjj

H1,1 - Ea=1 H1,2

H2,1 H2,2 - Ea=1

y
{
zzz 
i
k
jjj

1
Hc 'L2,1

y
{
zzz =

i
k
jjj

0.269 -2.92
-2.92 31.8

y
{
zzz 
i
k
jjj

1
Hc 'L2,1

y
{
zzz = 0

i
k
jjj

H1,1 - Ea=2 H1,2

H2,1 H2,2 - Ea=2

y
{
zzz 
i
k
jjj

1
Hc 'L2,2

y
{
zzz =

i
k
jjj

-31.8 -2.92
-2.92 -0.269

y
{
zzz 
i
k
jjj

1
Hc 'L2,2

y
{
zzz = 0

This amounts to solving for the ratio of the two coefficients, and we indicate this by putting a prime 
on the other coefficient of each pair. We can later fix the absolute value of the two coefficients from 
each set of equations by requiring that the resulting wave functions be normalized.

The second step is to ignore the first equation of each set. The remaining equations

HH2,2 - Ea=1L Hc 'L2,1 = -H2,1

HH2,2 - Ea=2L Hc 'L2,2 = -H2,1

 allow us to solve for the remaining coefficients,

Hc 'L2,1 = -HH2,2 - Ea=1L-1 H2,1

Hc 'L2,2 = -HH2,2 - Ea=2L-1 H2,1.
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18. Evaluate the coefficients Hc 'L2,1 and Hc 'L2,2. Answer: 0.0919 and -10.9.

19. Show that the normalization constant of the first order approximation to the wave 
function is 1í"######################1 + Hc 'L2,a

2 .

20. Show that the normalized approximate wave functions are

Y1 º Y1,approx HxL = 1.41 sin Hp xL + 0.129 sin H2 p xL,

Y2 º Y2,approx HxL = 0.129 sin Hp xL - 1.41 sin H2 p xL.

Here is a comparison of the approximate wave function to the exact wave function of the distorted 
well and to the wave function of the undistorted well.
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Figure 7. Exact ground state wave function, Y1HxL (thick curve), of the distorted well, with potential energy H2 xL5, approximation to 
the exact wave function, Y1,approxHxL (thick, dashed curve), and the wave function, y1HxL =

è!!!!2  sinHp xL (thin curve), of the undistorted 
well.

21. What do you conclude from the plot?

à The other approximate energy and wave function.

We determined two values of the energy such that the secular determinant vanishes. The second 
energy is an approximation to the first excited state of the distorted well.

22. Show that the zero order approximation to the energy of the first excited state is 39.48.

23. Show that the first order approximation to the energy of the first excited state,

E2 º e2 + ‡
0

1
y2 HxL* HH - H H0LL y2 HxL „ x,

gives the value E2 º 43.87. 

The exact value of the energy of the first excited state of the distorted well is E2 = 43.77, and so once 
again, the first order approximation to the energy, 43.87, is quite good. The second energy that solves 
the secular equation, that is, the second order approximation to the energy of the first excited state, is 
Ea=2 = 44.14. Since Ea=2 is not as close to the exact energy as the first order approximation, in this 
case the first order approximation to the energy is doing a slightly better job than the second order 
approximation to the energy.
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Here is a comparison of the normalized approximate wave function, Y2,approx, to the exact wave 
function of the distorted well and to the wave function of the undistorted well, for the first excited 
state.
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Figure 8. Exact first excited state wave function, Y2HxL (thick curve), of the distorted well, with potential energy H2 xL5, approximation 
to the exact wave function, Y2,approxHxL, (thick, dashed curve), and the wave function, y2HxL =

è!!!!2  sinH2 p xL (thin curve), of the 
undistorted well. The exact and approximate wave functions have been multiplied by -1 to match the phase of the wave function of 
the undistorted well.

24. What do you conclude from the plot?

à Accuracy of the second order approximation to energy and the first 
order approximation to the wave function

Let's see how the second order approximation works for a modified version of the distorted well.

29. Show that the equations for the expansion coefficients are now

i
k
jjj

H1,1 - Ea H1,2

H2,1 H2,2 - Ea

y
{
zzz i
k
jjj

c1,a

c2,a

y
{
zzz = i

k
jjj

90.27 - Ea -93.45
-93.45 180.2 - Ea

y
{
zzz i
k
jjj

c1,a

c2,a

y
{
zzz = 0

The values of Ea that solve the secular equation corresponding to these equations are Ea=1 = 31.52 
and Ea=2 = 238.9. As before, the lower of these two values is the second order approximation to the 
ground state energy.

Proceeding in the same way as before, you can find that the expansion coefficients, relative to 
c1,a = 1, are Hc 'L2,1 = 0.629 and Hc 'L2,2 = -1.591, and so that the normalized approximation to the 
ground state wave function is Y1 º 1.20 sinHp xL + 0.753 sinH2 p xL.

Here is a comparison of the normalized approximate wave function to the exact wave function of the 
new distorted well and to the wave function of the undistorted well.
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Figure 9. Exact ground state wave function, Y1HxL (thick curve), of the modified distorted well, with potential energy H4 xL5, 
approximation to the exact wave function (thick, dashed curve), and the wave function, y1HxL =

è!!!!2  sinHp xL, (thin curve) of the 
undistorted well.

25. What do you conclude from the plot?

Recall that the exact value of the energy of the ground state of the modified distorted well is 
E1 = 29.62, and that the first order approximation to the ground state energy is 90.27; that is, the first 
order approximation to the energy was very poor for this case. The first, lowest energy that solves the 
secular equation, that is, the second order approximation to the energy of the ground state, is 
Ea=1 = 31.52, and so the second order approximation to the energy is quite good, and a major 
improvement over the first order approximation to the energy.

Here is a table consisting of (1) the ground state energy of the undistorted well, the first order and 
second order approximations to the energy of the distorted well, and the exact energy of the distorted 
well, and (2) the ground state energy of the undistorted well, the first order and second order 
approximations to the energy of the modified distorted wells, and the exact energy of the modified 
distorted well. 

zero
order

first
order

second
order

exact

H2xL5 distortion 9.86879 12.3812 12.1127 12.0814
H4xL5 distortion 9.86879 90.2657 31.5234 29.6288

Approximate and exact energies for the alternative distorted wells. The distortion is the deviation H - HH0L from the infinite square 
well.

26. Why do you suppose in this case, for the modified version of the distorted well, with 
potential energy H4 xL5, the first order approximation is so poor whereas the first order 
approximation was so good for the original version of the distorted well, with potential 
energy H2 xL5.

27. Based the table, and the analyses of the wave function of the undistorted well, and the 
first order approximate wave functions and exact wave functions of the distorted wells, 
shown in figures 7 and 9, propose guidelines on how to best approximate energies and 
wave functions in terms of those of a reference system.
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à The approximate wave functions "diagonalize" the hamiltonian 
(optional)

This last part explores some general properties of the procedure used to find the second order 
energies and the corresponding first order wave functions, for the example of the well with distortion 
H2 xL5. You may omit this part if you are pressed for time, leaving it for study outside of workshop.

28. Make use of the orthonormality of the basis functions, y1 and y2, to show that 
Ÿ0

1
Y2,approxHxL Y1,approxHxL „ x = 0.

29. Show that the matrix of the hamiltonian of the distorted well in the basis of its 
approximate wave functions, Y1,approx and Y2,approx, is a diagonal matrix, and that the 
elements on the diagonal are the second order approximations to the energy.

The last question illustrates the general result that solving the Schrödinger equation by expansion in a 
basis is equivalent to finding the combinations of basis functions in terms of which the matrix of the 
hamiltonian is diagonal. It is for this reason that solution to the Schrödinger equation is often referred 
to as diagonalizing the hamiltonian.

Formally, the process of diagonalization is carried out by a particular kind of matrix multiplication 
known as a similarity transformation. A similarity transformation of a matrix H by a matrix U is 
defined as the matrix product U-1 HU. In this case, U is the matrix whose first row is the expansion 
coefficients c j,a=1 and whose second row is the expansion coefficients c j,a=2,

U =
i
k
jjj

c1,1 c2,1

c1,2 c2,2

y
{
zzz =

i
k
jjj

0.996 0.0915
0.0915 -0.996

y
{
zzz

The matrix U has the special property that its transpose, U
é

, is its inverse. This property is called 
orthogonality.

30. Demonstrate that U is an orthogonal matrix, by showing that U
é

U = I.  

31. Show that U diagonalizes the hamiltonian matrix,

H = i
k
jjj

12.4 -2.92
-2.92 43.9

y
{
zzz.

That is, show that

U-1 HU =
i
k
jjj

Ea=1 0
0 Ea=2

y
{
zzz.
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