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Abstract. In High-Performance Computing (HPC) systems, users es-
timate the resources they need for job submissions based on their best
knowledge. However, underestimating the required execution time, num-
ber of processors, or memory size can lead to early job terminations. On
the other hand, overestimating resource requests leads to inefficiencies
in job backfilling, wasted compute power, unused memory, and poor job
scheduling, ultimately reducing the overall system efficiency. As we enter
the exascale era, we want to utilize resources more efficiently than ever.
Existing schedulers lack mechanisms that predict the resource require-
ments of batch jobs. To address this challenge, we design a data-driven
recommendation framework that leverages historical job information to
predict three key parameters for batch jobs: the execution time, the max-
imum memory size, and the maximum number of CPU cores required.
In contrast to existing machine learning-based resource prediction meth-
ods, we introduce an online resource suggestion framework that consid-
ers both underestimates and overestimates in the batch jobs’ resource
provisioning. Our framework outperforms the baseline method with no
grouping mechanism by achieving over 98% success in eliminating un-
derpredictions and reducing the amount of overpredictions.
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1 Introduction

High-Performance Computing (HPC) systems host and run many scientific ap-
plications from domains like genomics, climate modeling, and computational
physics [21,15,11]. Users of these large-scale systems provide resource requests
through batch job submission scripts. They request the necessary resources for
their applications, such as maximum wallclock time, number of processors, and
maximum memory size, based on their best knowledge [19]. This user-based re-
quest for batch job resources often leads to underprediction or overprediction
problems. From the resource utilization perspective, underprediction refers to
requesting fewer resources than needed, leading to early job terminations, out-of-
memory, and insufficient processor errors. One of the resource utilization logs we
analyze in this work shows that a total of 7.46% of the jobs failed due to out-of-
memory and out-of-time errors. Overprediction of resources, on the other hand,
results in increased job wait times, idle memory and computational resources,
reduced quality of services for users, and overall decreased system efficiency [16].
Thonglek et al. demonstrate the overprediction and waste of resources in the
Google Borg Cluster and reveal that users requested extra numbers of CPUs
and larger memory sizes for their jobs over 95% of the time, which leads to these
valuable resources sitting idle [25].

Predicting the resource requirements of batch jobs to avoid these problems
has been an ongoing machine learning (ML) problem in the HPC domain [24,18].
A resource predictor is successful if it accurately estimates the job runtime and
the required resources for successful execution. In this work, we design a resource
recommendation framework that predicts the resource requirements of batch jobs
and gives suggestions to the users before the jobs are run on the HPC system.
Figure 1 presents the overview of our framework.

In this framework, we group the historical workload logs based on their sub-
mission parameters and train individual ML models for these clusters. We de-

Fig. 1. Overview of our resource recommendation framework.
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termine the number of clusters for each dataset through our experiments. After
the training, we find the cluster most similar to each testing data point and
make predictions on resource requirements. Finally, we evaluate the framework’s
performance with historical resource utilization datasets. The contributions of
this work are as follows:

– We design a job grouping-based intelligent prediction framework for HPC
batch job resource provisioning to reduce overpredictions and minimize un-
derpredictions1.

– We analyze and compare ML models’ resource usage prediction accuracy
using real-world workload manager logs from 5 different HPC systems to
develop the recommendation framework.

– We evaluate how our framework reduces resource waste by minimizing over-
prediction, comparing its effectiveness against baseline methods.

Our work demonstrates the advantages of job grouping and machine learning
for resource prediction in HPC batch jobs. Our recommendation framework can
reduce the early job terminations due to execution time underprediction down
to 0.89%. Additionally, experimental results show a substantial decrease in the
execution time overestimation and unnecessary memory allocation.

Section 2 provides the state-of-the-art resource prediction in the HPC do-
main. In Section 3, we explain the design principles and our motivation for
building the recommendation framework. The details about the datasets we use
in the experimental procedure, the baseline methods, and the performance met-
rics are in Section 4. In Section 5, we compare our framework’s performance with
the baseline methods and evaluate its success. Finally, we conclude our paper
and give ideas for future work in Section 6.

2 Related Work

Existing workload managers and schedulers like Slurm [4], Altair PBS [2], and
Sun Grid Engine [1] allow users to request resources in a fine-grained manner.
They accept job submissions, then queue and schedule the batch jobs based on
their scheduling policies. However, they assign resources to the batch jobs based
on user requests and do not provide resource usage predictions or suggestions for
batch job submissions. User-dependent resource requests can result in early job
terminations or idle resources due to users’ under- or overprediction. To prevent
out-of-time, out-of-memory, and other resource shortage problems, accurately
predicting batch job resource requirements has been an ongoing interest in the
cloud and HPC domains. One existing work for cloud systems resource man-
agement scales resources proactively by considering memory and CPU-related
anomalies at runtime [14]. Furthermore, Zhang et al. [27] use reinforcement learn-
ing to predict the resource requirements of microservices.

1Our implementation is available at:
https://github.com/peaclab/intelligent-resource-allocation
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In HPC systems, on the other hand, previous work on resource prediction
for batch jobs depends on historical log data from various workload managers.
In their recent work, Menear et al. [18] develop an execution time predictor
for batch jobs using the XGBoost [8] model. Regression models like XGBoost
are common choices in predicting resource requirements based on historical data.
However, neural networks can also address resource prediction by capturing com-
plex resource utilization patterns. For example, by analyzing the Google Cluster
Dataset from 2019 [26], Thonglek et al. [25] introduce a time series prediction
model based on Long Short-Term Memory (LSTM) networks [13]. This model
uses submission and utilization parameters to predict CPU and memory utiliza-
tion percentages for Google cluster jobs.

To predict multiple types of resources with a single model, Tanash et al. [24]
design a regression-based ML model. The maximum memory size and execution
time of jobs running on Slurm-operated systems are the target variables. They
use specific user accounts’ resource usage information to build the model and
try to optimize RMSE and R2 values while reducing the wait time of jobs. They
achieve 86% accuracy in predicting the execution time and memory requirements
of jobs at the same time. They use resource utilization information as training
features, which limits the framework from making predictions at the submission
time. In other words, despite their high accuracy and low RMSE values, existing
methods do not offer recommendations to users before job submission. Since we
aim to make predictions before jobs are executed, we cannot rely on resource
utilization information while building our framework.

Existing work considers execution time prediction separately from CPU and
memory requirements. For example, one study addresses job queue time predic-
tion resulting from requesting more wallclock time than necessary [20]. Another
study focuses on idle resources and inefficiencies in the system due to the overpre-
diction of number of CPU cores and maximum memory size [25]. In our work, we
build a framework that is able to predict execution times, the required number
of processors, and the maximum memory size of jobs.

Additionally, as we demonstrate in Section 5 of our work, regression-based
models tend to underpredict execution times and require additional strategies to
solve this problem. Contrary to the existing work, our approach simultaneously
tackles underprediction and overprediction problems by proposing overprediction-
aware buffering and resampling mechanisms, and a recommendation framework
that helps HPC system users optimize their batch job submissions.

3 Machine Learning Based Resource Prediction

Our framework’s main goal is to accurately predict the execution time and the
required CPU and memory resources at the submission time. Figure 2 overviews
our offline ML model training and testing mechanisms. In this section, we justify
some of our important design choices.
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Fig. 2. Offline training steps of our prediction framework.

3.1 Data Preprocessing and Grouping

The datasets we use in this study contain information on successfully executed
and failed batch job submissions. Since our main goal is to make accurate pre-
dictions, we only use data related to the submission and resource usage of the
completed jobs in the training stage. Therefore, the first phase of data prepro-
cessing is to filter out jobs that failed to execute successfully. Then, we apply
label encoding to categorical columns, such as user name, job name, and other
string-like parameters. Note that we exclude the job ID column that has repeat-
ing values and provides inaccurate job resource utilization similarities.

In the job grouping stage, we use the features from the workload managers
which are available before the job execution starts. Some of the features we
use include the user’s name, job name, job ID, account name, hard resource
requests (e.g., the number of processors, maximum memory size requests from
batch job scripts), and wallclock limits (i.e., maximum allowed runtime the user
sets). For batch job information grouping across datasets, we apply K-means
clustering from the scikit-learn library [22]. We determine the optimal number
of clusters for each experimental dataset using the elbow method. To apply the
elbow method, we calculate the Within-Cluster Sum of Squares (WCSS) score
for varying numbers of clusters (k) with the following formula:

WCSS =

K∑
k=1

∑
i∈Ck

∥xi − µk∥2, (1)

where:

– K is the total number of clusters,
– Ck is the set of all data points in the k-th cluster,
– xi is a single data point that belongs to the cluster Ck,
– µk is the centroid of the k-th cluster,
– ∥xi − µk∥2 is the squared Euclidean distance between the data point xi and

the centroid µk.

The WCSS score shows the distances of data points from the centroids of their
respective clusters. A smaller WCSS indicates that the data points are closer to
their centroids and clusters contain more similar batch job information. After
calculating the WCSS values, we observe the elbow point for each dataset and
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determine the optimal number of clusters. We show the elbow method results in
Section 5.1.

3.2 Machine Learning Model Selection and Training

In this section, we explain our recommendation framework’s offline model train-
ing stage design choices. The framework provides continuous numerical predic-
tions on resource usage and execution time. We use XGBoost and Random Forest
linear regression models for model training since they offer low computational
overhead and high accuracy in predicting resource utilization for HPC applica-
tions [18]. Their design allows us to make continuous predictions based on se-
lected training features, which are submission parameters from the corresponding
workload manager. We do not include resource usage information in the model
training feature set.

LSTM and other neural network models also offer advantages and high pre-
diction accuracy in time-series prediction problems. Thonglek et al. design an
LSTM-based resource predictor that consistently predicts values lower than the
user’s requests while avoiding underprediction of CPU and memory utiliza-
tion [25]. However, in this approach, the input features for the LSTM model
include CPU and memory utilization. Since we focus on a recommendation
framework that can accurately predict resource requirements of jobs before they
run on a given HPC system, we cannot rely on or use resource usage features
that are unavailable before job execution. Therefore, in this work, we implement
different regression models, compare their performance, and show their efficiency
in resource prediction while leaving the implementation of neural networks for
future work.

To build our recommendation system, we train resource prediction models
with an offline training principle. While using the XGBoost model, we note that
there might be negative predictions since the original model with default pa-
rameters does not force the predictions to be positive. Since the target variables
we want to predict are resource utilization values, we apply an additional loga-
rithmic transform before training the model to prevent any negative execution
time and resource utilization predictions. Furthermore, we experiment with dif-
ferent time windows and train durations, and the results of our experiments for
training and testing data splits are in Section 5.2. The ML models we train with
historical logs from workload managers build the recommendation framework’s
offline training stage.

3.3 Handling Underpredictions

One of our primary goals with this work is to prevent early batch job termina-
tions. Regression models require addressing the problem of underprediction for
the requested wallclock time, number of processors, and memory allocated to
each job, as we introduce in Section 2 on related work.

Our technique groups similar jobs based on their submission parameters in
the training set and trains separate models for each cluster. However, when
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we apply these models to new jobs in the test set, they tend to underestimate
resource usage compared to the actual values. We analyze this underprediction
problem in detail through our experiments in Section 5. To mitigate this problem,
we present two strategies in this section.

The first solution we offer is to add a buffer to the ML model predictions. In
their recent work, Dai et al. [10] scale the execution time predictions by a prede-
fined value. In contrast, Cui et al. [9] add an offset value based on the training
dataset characteristics. Since we aim to limit overpredictions while mitigating
the underpredictions, choosing a buffer value that reduces the underpredictions
without increasing the overpredictions by a great amount is important. As a
result, we use twice the standard deviation of underpredictions within each clus-
ter as our buffer value. First, we separate a validation set among all clusters in
the training stage. Then, we train individual models with training sets and test
these models on validation sets to calculate the buffer value. An illustration of
our buffer calculation is in Figure 3. At the test stage, we observe the effective-
ness of our framework by shifting the predictions in the test dataset with the
buffer value. We use the following formula for the 2σ calculation.

2σ = 2

√√√√ 1

n

n∑
i=1

(xi − µ)
2
, (2)

where:

– n is the number of job information within the cluster validation set,
– xi is the resource usage of job i,
– µ is the mean resource usage within the cluster validation set.

During the experimental procedure, we observe that the clusters formed in
each training dataset do not clearly separate jobs based on resource utilization.
This is expected, as we do not consider the resource usage information while
forming the clusters. If the amount of batch jobs with high resource usage or
execution time is low for a dataset, the clusters we create do not represent these
jobs well. In other words, the number of long-running jobs with high CPU or
memory resource usage in the clusters can be substantially smaller than the
number of short-running jobs with smaller resource needs.

Fig. 3. This is a representative figure for buffer value calculation per cluster. Each
square represents a data point with different batch job information.
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Fig. 4. This figure illustrates the resampling method. Each rectangle represents a data
point corresponding to a different batch job information within a training dataset
cluster.

To alter this nonuniform distribution in training data and possibly overcome
the underprediction problem, we introduce a second strategy to resample less
frequent batch jobs in the training clusters. For each cluster, we determine the
minimum and maximum resource usage values for CPU and memory utilization,
and the execution time. Based on these values, we create equally spaced bins and
group the jobs in a sense. Then, we find the bin with the maximum number of
samples and resample other bins to reach this maximum value. We aim to have
representative job information in the training set and ensure that it sufficiently
reflects the diversity of resource usage within each cluster. We visualize this
approach in Figure 4. In our experimental procedure, we investigate the results of
the execution time, maximum memory size, and maximum number of processor
predictions of batch jobs with and without these two different strategies. We
refer to the buffer value as 2σ and indicate the resampling method whenever
applicable.

4 Experimental Methodology

This section explains the datasets and features we use for ML model training,
the baseline methods we compare our method with, and the performance metrics
we choose to test the effectiveness of our recommendation framework.

4.1 Datasets

We evaluate our approach using real system workload manager outputs from
different schedulers, such as Slurm and Sun Grid Engine. In this subsection, we
describe the datasets we use in our study. These datasets include information on
both successfully executed jobs and failed jobs, possibly along with the failure
reasons. In this work, we use only the successful job data in model training to
predict the target resources as accurately as possible. Table 1 summarizes the
features we use to train each dataset’s ML models.
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Sandia Dataset We analyze and make resource predictions on a resource utiliza-
tion dataset from Sandia National Laboratories. The dataset duration is from
May to October 2024. There are 313,615 completed jobs from 614 different users,
and the execution time, mean, and maximum CPU and memory utilization of
batch jobs are available.

NREL Eagle Dataset The National Renewable Energy Laboratory (NREL) pro-
vides publicly available data on resource requests and utilization for over 11
million jobs executed on the Eagle supercomputer [12]. Eagle served as NREL’s
primary HPC system from 2018 to 2024, hosting 2,000 nodes and providing a
total computing capacity of 8 petaflops per second [3]. This dataset includes
job information from November 2018 to February 2023, collected by Slurm, and
submitted by 936 users, with user and project account names included. This
dataset contains 67% successful jobs, and 7.28% of the total jobs failed due to
timeout, which emphasizes the need for accurate execution time prediction.

M100 CINECA Dataset Borghesi et al. [6] provide a 31-month-long resource
utilization data using a Slurm plugin from Marconi-100 (M100) supercomputer
located at the CINECA datacenter. M100 supercomputer hosts 347,776 cores
and provides up to 21.64 petaflops per second [23]. The dataset is organized in
months [7], and we test our approach by using a subset of it from December
2021, providing 79,173 successful jobs from 402 users. The failed jobs we exclude
from this work have 6.63% timeout errors and 1.23% out-of-memory errors.

Fugaku Dataset Fugaku supercomputer, located at the RIKEN Center for Com-
putational Science (R-CCS) in Kobe, Japan, comprises 7,630,848 cores and pro-
vides a total computing capacity of 442.01 petaflops per second. Fugaku is ranked
as the sixth supercomputer system to reach exascale computing in 2024 [23]. A
three-year resource utilization dataset (March 2021- April 2024) from Fugaku is
publicly available [5]. In our work, we utilize a subset of this dataset containing
338,796 completed jobs, submitted by 483 users in April 2024.

Boston University Shared Computing Cluster (BU SCC) Dataset The BU Shared
Computing Cluster (SCC) is a Linux-based system with over 28,000 CPU cores,
400 GPU nodes, and 14 petabytes of research data storage. Boston University’s
Research Computing Services (RCS) manages the cluster and the workload man-
ager is the Sun Grid Engine (SGE). SGE stores the historical job submissions
and resource usage data, known as "accounting information". In this work, we
utilize the accounting data from 2023 containing 11,831,831 successful jobs.

4.2 Baseline Methods

One of the fundamental baselines for resource prediction and allocation in HPC
systems we consider is the user-requested values. In the datasets we use, as Ta-
ble 1 summarizes, we have access to the execution time, peak memory, and CPU
request information except for the Sandia Dataset. For the remaining datasets,
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Table 1. Selected Training Features, Present at Submission Time

Feature Name Sandia Eagle M100 Fugaku BU SCC
User Name/ID ✓ ✓ ✓ ✓ ✓
Job Name ✓ ✓ ✓ ✓
Project Account Name/ID ✓ ✓ ✓
Partition ✓ ✓
Priority ✓
Working Directory ✓
Requested Wallclock Time ✓ ✓ ✓ ✓
Requested Memory Size ✓ ✓
Requested Processors ✓ ✓ ✓
Requested Number of Nodes ✓ ✓
Requested GPUs ✓
Requested Frequency ✓

the first baseline for comparison and improvement is the resource requests by
users at the time of submission, which we refer to as User Requested. Addi-
tionally, we compare our framework’s results with Menear et al.’s method [18],
where the authors use an XGBoost model to predict the execution time of jobs.
The model characteristics and hyperparameters are publicly available [17]. In
our experimental procedure, we refer to this second baseline method as Single
XGB.

4.3 Performance Metrics

Selecting performance metrics that suit our framework’s goals is essential for a
more effective comparison and better interpretability. In this work, we measure
the framework’s success based on two main objectives: preventing underpredic-
tions and reducing the amount of overpredictions. Classical error metrics, such
as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), do not
specifically reflect the underpredictions or the amount of overpredictions. These
metrics compare each prediction point only with the true values and report the
statistical error. To gain more insights into our results, we need to use alternative
metrics to better assess the success of our framework.

For our framework’s first objective, we report the ratio of jobs with underpre-
dictions to the total number of jobs, as Dai et al. [10] suggest. Ideally, this ratio
should be equal to 0 where none of the jobs experience early job terminations.
We define this metric as the Underprediction Ratio (UR) and calculate it
using the following formula:

Underprediction Ratio (UR) = 100× Number of Jobs with Underprediction
Total Number of Jobs

.

(3)
While this metric shows how many jobs can execute successfully using our

framework, it does not reflect the amount of underpredictions. We include the
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MAE distribution and median error of resource predictions to support the UR
results in Section 5.3. Our motivation is to quantify the prediction errors since an
underprediction of 1 hour is more significant than 1 minute of underprediction.

Our second goal, reducing overpredictions, requires observing the user-requested
values, actual resource usage, and the predictions our framework makes. Ideally,
our framework’s predictions should not be much larger than the actual values,
especially compared to the user-requested values. While we report the total
amount of overprediction for different resource types in the experimental proce-
dure, we want to observe the changes in resource request distribution without
using aggregated values. Consequently, we use the overestimation factor formula
introduced by Menear et al. [18]:

Overestimation Factor (OF) =
Requested Resource of Predicted Utilization

Actual Resource Utilization
.

(4)
For example, consider a user who requests 32 CPU cores for two jobs. One

job requires only 2 cores, resulting in an OF of 16; the other requires 8 cores,
giving an OF of 4. If our framework predicts the number of processors as 4 and
16 cores for these jobs, the OF becomes 2 in both cases. However, there is more
improvement in predictions for the first job, where the OF drops from 16 to
2. Therefore, observing the OF distribution of user-requested values and frame-
work predictions on the test set shows our framework’s success. We calculate
this metric for both users’ resource requests and ML model predictions for max-
imum memory size and number of processors. Then we visualize the results using
density plots in Section 5.4 to evaluate how effectively our framework reduces
overpredictions.

5 Results and Discussion

In this section, the goal is to show our framework’s success as a recommenda-
tion system. Through our experiments, we find the optimal number of clusters
for job grouping and choose the window sizes for model training. We present
the inference experiment results of our framework’s predictions on execution
time, maximum memory size, and number of processors for different datasets by
comparing them with the baseline methods. Note that we represent the method
we offer without any underprediction prevention mechanism as ’Clustering’, use
’XGB’ and ’RF’ as abbreviated versions of the XGBoost and Random Forest
models, and indicate the buffer and resampling methods as ’2σ’ and ’Resam-
pling’.

5.1 Finding Optimal Number of Clusters

As we explain in section 3.2, we calculate and plot the WCSS scores for varying
numbers of clusters for each experimental dataset. We select the elbow point
from the WCSS plots in Figure 5 and determine the number of clusters to create
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Fig. 5. The WCSS value per cluster

for each dataset. At this stage, for the Fugaku and M100 datasets, increasing
the number of clusters further than 4 and 6 may result in empty data frames.
This indicates that the natural grouping for these smaller datasets, compared
to Sandia, Eagle, and BU SCC, should have fewer clusters. Also note that the
K-Means algorithm selects the initial centroids randomly, and we initialize the
same centroids in repeating experiments by using the same random state.

As a result, we choose 18 for the Sandia, Eagle, and BU SCC datasets, 4
for the Fugaku dataset, and 6 for the M100 CINECA dataset as the number of
clusters in the experimental procedure.

5.2 Evaluating the Effect of Window Size on Underpredictions

The experimental datasets in this work contain batch job logs from a wide range
of durations, from 1 month to almost 5 years. The train and test time split for
these datasets significantly changes the predictions and the framework’s success.
To decide on an optimal train and test data split, we conduct execution time
prediction experiments with varying training windows. The window size is the
duration of a subset we train and test our models with. The update interval refers
to the amount of time shift we apply for each window to cover all data points.
For each window, we use the last 20% of batch jobs for testing. We separate 40%
of the training data as the validation set to calculate the buffer values. For each
dataset, we use the update interval and window size pairs in Table 2 where the
units are the number of days.

We determine the window size for each dataset by analyzing the UR, along
with the mean and standard deviation of underprediction amounts across differ-
ent window sizes. Note that the underprediction amount is the total difference

Table 2. Window Size and Update Interval Pairs for Train-Test Split Experiment

Parameters Sandia Eagle M100 Fugaku BU SCC
Window Size 7, 14, 30 7, 14, 30, 60, 90 3, 7, 14 3, 7, 14 7, 14, 30, 60, 90
Update Interval 7, 7, 30 7, 7, 30, 30, 30 3, 7, 7 3, 7, 7 7, 14, 30, 30, 30
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Fig. 6. Window size experiment results for Sandia Dataset execution time prediction.

between actual and predicted execution times. We create bar plots for the sep-
arate datasets’ window size experiment results. We include all of the models we
test and the underprediction prevention mechanisms in these plots. For example,
we present the Sandia dataset execution time prediction results in Figure 6. We
observe that the standard deviation and the mean underprediction amount of
models with buffer addition are larger than the no buffer cases. This results from
the decrease in the number of underpredicted test data points with the buffer
addition.

As a result of this experiment, we determine the optimal window size and
update interval pairs as follows: [7,7] days for the Sandia, [30,30] days for Eagle,
[3,3] days for M100 and Fugaku, and [60,30] days for the BU SCC datasets. We
generally observe that looking at a smaller window for execution time prediction
gives better performance. The next sections provide more insight into the results
for these best-performing window size values.

5.3 Execution Time Prediction

In this section, we compare the results of our framework on execution time pre-
diction with the baseline methods using the performance metrics we select. We
treat execution time prediction as a regression problem and test two strategies
we develop to mitigate the underprediction problem. We shift the windows for
each dataset’s optimal window size to cover the entire duration. Therefore, the
underprediction ratios in Table 3 show the results from the full datasets using
our training strategy.

The execution time prediction experiment outcomes show that clustering
similar jobs before model training can improve the UR value up to 12.08% in
the BU SCC dataset (see Table 3). The baseline method underpredicts more
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Table 3. Predicted Execution Time (Underprediction Ratio Results).

Method Sandia Eagle M100 Fugaku BU SCC
Single-XGB 48.59% 50.16% 48.59% 46.91% 49.87%
Clustering-XGB 48.45% 49.31% 49.90% 45.78% 49.58%
Clustering-RF 38.22% 40.89% 46.31% 40.71% 37.79%
Resampling-XGB 46.65% 42.35% 48.21% 40.73% 47.07%
Resampling-RF 39.20% 37.66% 45.68% 38.58% 37.04%
Single-XGB + 2σ 2.01% 1.37% 2.10% 1.89% 0.88%
Clustering-XGB + 2σ 2.28% 3.80% 2.24% 2.61% 1.24%
Clustering-RF + 2σ 1.77% 2.86% 2.19% 2.29% 0.89%
Resampling-XGB + 2σ 8.52% 4.70% 5.17% 3.60% 2.06%
Resampling-RF + 2σ 7.39% 4.65% 4.75% 3.57% 1.82%

than the Clustering-RF model for all datasets. However, to provide better rec-
ommendations to users, our framework should have UR values close to zero in
the practical case. Therefore, we consult the underprediction handling strategies
we introduce in Section 3.4. The resampling strategy provides improvement up
to 9.39% in the Sandia dataset, when the offline training model is Random For-
est. Across datasets, we observe the smallest UR values resulting from adding a
buffer value of 2σ to the baseline model.

Figure 7 provides an MAE density plot for the Eagle dataset to analyze
the prediction errors in execution time further. Although the baseline method
with a buffer value performs the best in terms of UR, we observe that the re-
sampling strategy improves the MAE distribution and reduces the median error
in execution time compared to the Single-XGB and Clustering-XGB methods.
We observe a similar trend for other experimental datasets, which can motivate
users to select the clustering and resampling strategy instead of training a single
model to reduce the MAE for different job durations.

For our second objective, reducing the overestimation of execution time, we
need to observe the predictions with a buffer value addition. As the first step,
we visualize the user requests of execution time and the Resampling-RF method

Fig. 7. Mean absolute error distribution in execution time prediction for Eagle Dataset.
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Fig. 8. Framework execution time predictions comparison with the user requests for
Eagle Dataset.

with buffer value addition predictions in Figure 8. Through this analysis, we
observe that our framework can predict smaller execution time regions than the
user requests, for ranges of actual execution time of jobs. In the practical case,
this can result in shorter job waiting times since the wallclock time request and
waiting time are positively correlated, as Figure 8 shows. Hence, reducing the
wallclock time requests can improve the mean waiting time and increase the
quality of service for HPC system users.

In Figure 9 we provide the total amount of overestimation compared to the
user requests. This figure illustrates the advantages of using a machine learning
model to predict the execution time of jobs without relying on the user’s manual
selections. Our framework reduces the overestimation in total execution time
by applying regression models for all datasets. The clustering method with 2σ
buffer and resampling strategies gives the biggest improvement in the execution
time overpredictions, which reaches a 13.60 times reduction for the M100 dataset

Fig. 9. Total amount of execution time overprediction comparison for user requested
values with machine learning model predictions.
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with the Resampled RF model. We also note that the differences between XGB
and RF models are very subtle with a buffer value addition for the execution
time prediction, both in terms of UR values and the overprediction results.

In light of the execution time experiments for varying workload manager
outputs, we conclude that resampling the less frequent batch job information in
the machine learning model training stage and applying a buffer value to the
predictions can reduce the number of underpredictions below 2% of total jobs
while keeping the overpredictions under control.

5.4 Predicting Resource Requirements of Batch Jobs

We extend our framework to predict additional resource types, along with ex-
ecution time, to provide HPC users with extensive job resource utilization rec-
ommendations. The first resource type we make predictions on is the maximum
memory size requirement of a given batch job. In the Fugaku dataset, we have
access to the requested maximum memory size and the utilization values, while
the Sandia dataset does not provide user requests. Therefore, we perform re-
source prediction experiments on both datasets and illustrate the improvement
in users’ resource selection only with the Fugaku dataset.

Our job grouping-based framework achieves a 2.59% underprediction ratio
for the maximum memory size prediction in the Sandia dataset, outperforming
the baseline, which underpredicts the memory resources for 48.31% of total test
jobs. The reduction in the underprediction ratio is down to 5.50% in the Fugaku
dataset. Table 4 presents our results of underprediction prevention mechanisms
along with the baseline and clustering models.

Moreover, in Figure 10, we observe the amount of user-selected memory size
requests compared to our framework predictions. Fugaku system users without
the aid of any prediction framework overestimate the maximum memory size
of their jobs by 1010 with a density centering around 0.4. This system contains
jobs with thousands of nodes allocated to them; hence, the maximum memory
size requests reach up to 1012 bytes. Although we add the 2σ buffer value to

Table 4. Predicted Peak Memory Utilization (Percentage of Cases with Underpredic-
tion).

Method Sandia Fugaku
Single-XGB 48.31% 49.87%
Clustering-XGB 48.45% 47.58%
Clustering-RF 37.32% 46.10%
Resampling-XGB 46.87% 46.38%
Resampling-RF 37.94% 45.20%
Single-XGB + 2σ 2.48% 3.04%
Clustering-XGB + 2σ 3.22% 5.48%
Clustering-RF + 2σ 2.59% 5.50%
Resampling-XGB + 2σ 12.22% 6.72%
Resampling-RF + 2σ 9.74% 6.70%
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Fig. 10. Overestimation factor density plots for maximum memory size and the number
of processors prediction in the Fugaku dataset.

our predictions, the framework still reduces the overestimation factor to the
100−102 range. This result shows the effectiveness of our framework in reducing
overestimations and its usability in a real HPC system where users tend to
request more memory for batch job submissions than their jobs actually use.

To support the use case of applying the framework for other resource types,
we also conduct experiments on the number of processor utilization of batch
jobs in the Sandia and Fugaku datasets. Similar to the maximum memory size
utilization, the Fugaku dataset includes both requested and utilized number
of processors information, while the Sandia dataset provides only utilization
information. For the execution time and memory size, we use regression models
and directly predict continuous values. However, since the number of cores can
only take integer values, we round the predictions of the regression models to
the closest larger integer value for this prediction problem.

With the same training and testing methodology as in previous sections, we
achieve an underprediction ratio of 11.05% in the Fugaku dataset using only the
Clustering-RF method without adding the 2σ buffer and outperform the baseline
method that underpredicts the number of cores for 25.78% of the jobs in the
test dataset. In the Sandia dataset predictions, adding the buffer value results
in UR ratio reduction down to 3.79% with the baseline method as visible in
Table 5. Testing the success of our framework in terms of the number of processor
predictions supports our claim of using this methodology as a recommendation
system.

However, a tradeoff exists between preventing the underestimations of a given
resource type and limiting the amount of overestimations. This phenomenon is
visible from the number of processor prediction results in Figure 10. Comparing
the user-requested number of cores with the machine learning model predictions
(including buffer values) reveals that models tend to overpredict core require-
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Table 5. Predicted Maximum Core Usage (Percentage of Cases with Underprediction).

Method Sandia Fugaku
Single-XGB 37.42% 25.78%
Clustering-XGB 28.75% 16.57%
Clustering-RF 23.81% 11.05%
Resampling-XGB 31.88% 19.90%
Resampling-RF 22.45% 12.99%
Single-XGB + 2σ 3.79% 0.27%
Clustering-XGB + 2σ 4.74% 1.39%
Clustering-RF + 2σ 4.09% 1.29%
Resampling-XGB + 2σ 14.35% 2.03%
Resampling-RF + 2σ 10.32% 2.41%

ments more than the users do. Unlike the maximum memory size prediction,
users tend to request fewer resources compared to our framework, which shows
us the variance in user requests. While the manual selection of resources gives
satisfying results for the number of core requests per batch jobs, the maximum
memory size prediction needs the help of our framework.

6 Conclusion and Future Work

This paper introduces an intelligent, job grouping-based resource recommenda-
tion framework for HPC system users. Users can select the resource type for
the framework to predict and the underprediction prevention mechanisms they
choose to use.

Using this framework, we reduce the underprediction of execution time, mem-
ory, and CPU resources to less than 2% and outperform the baseline method.
The framework also reduces the amount of overestimation in batch job resources
and possibly will decrease the user waiting time. The historical workload man-
ager logs we include in this work are real system datasets, and we observe that
waiting time is correlated with the users’ resource requests. Therefore, HPC users
can benefit from this recommendation system by predicting their jobs’ resource
requirements before submitting them to the workload manager, using historical
resource utilization datasets of their own.

As future work, we aim to use a real workload manager simulator or a real
production system supercomputer to show our framework’s success in reducing
the early terminations of jobs, longer queue times, and waste of valuable com-
puting and memory resources. To extend this work, we plan to investigate the
same batch jobs’ resource utilization variations and their relationship with the
resource contention in the system.
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