Code
Available

@ oot

Code
Reproducible

Fast Chip Transient Temperature Simulation via
Machine Learning

Mohammadamin Hajikhodaverdian*, Sherief Redaf, Ayse K. Coskun*
*Dept. of Electrical & Computer Engineering, Boston University, Boston, MA, USA
{aminhaji, acoskun}@bu.edu
fSchool of Engineering, Brown University, Providence, RI, USA
sherief_reda@brown.edu

Abstract—With growing transistor densities, analyzing temper-
ature in 2D and 3D integrated circuits (ICs) is becoming more
complicated and critical. Finite-element solvers give accurate
results, but a single transient run can take hours or even
days. Compact thermal models (CTMs) shorten the temperature
simulation running time using a numerical solver based on the
duality between thermal and electric properties. However, CTM
solvers often still take hours for small-scale chips because of
iterative numerical solvers. Recent work using machine learning
(ML) models creates a fast and reliable framework for predicting
temperature. However, current ML models demand large input
samples and hours of GPU training to reach acceptable accuracy.

To overcome the challenges stated, we design an ML frame-
work that couples with CTMs to accelerate steady-state and tran-
sient thermal analysis without large data inputs. Our framework
combines principal-component analysis (PCA) with closed-form
linear regression to predict the on-chip temperature directly. The
linear regression weights are solved analytically, so training for a
grid size of 512 x 512 finishes in under a minute with only 15-20
CTM samples. Experimental results show that our framework
can achieve more than 33x and 49.6x speedup for steady-state
and transient simulation of a chip with a 245.95mm? footprint,
keeping the mean squared error below 0.1°C2.

Index Terms—Thermal simulation, Compact thermal models
(CTM), principal-component analysis (PCA), Machine learning,
3D IC

I. INTRODUCTION

With increasing chip transistor density, modern high-
performance integrated circuits (ICs) now employ multicore
2D processors and 3D stacked architectures to meet higher
computational throughput and memory bandwidth demands.
While these designs offer substantial performance benefits,
they also introduce significant challenges in thermal man-
agement due to increased heat and power densities. These
thermal issues can degrade reliability, limit performance, and
ultimately reduce the operational lifespan of the chip [1]-
[4]. Several techniques, such as dynamic thermal management
and temperature-aware design, have been proposed to address
thermal challenges. Temperature-aware requires involving the
thermal simulation in the design loop, so current thermal
simulators are drastically slow, especially for transient, but
also even for steady-state. To enable optimizing with realistic
power conditions and runtime behavior, we need to substan-
tially reduce thermal simulation time.
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Conventional thermal simulation methods rely on solving
the heat-conduction equations using finite-element methods
(FEM) [5]. Commercial tools such as COMSOL and ANSYS
use these methods, but they are computationally expensive in
terms of runtime and memory consumption. Specifically for
transient simulation, FEM-based methods take hours to days
to complete a simulation. Compact thermal models (CTMs)
were developed to overcome these constraints [6]-[8]. CTMs
support steady-state and transient analysis by simplifying
thermal modeling and taking advantage of the duality between
the thermal and electrical domains. Additionally, they can use
advanced cooling methods like heat sinks and microchannels
[9], [10]. Iterative numerical solvers are still needed to solve
hundreds or thousands of power steps sequentially for transient
simulations, which significantly increase computation times,
particularly for large-scale 3D designs.

Recent studies have explored machine learning (ML)-
based approaches to accelerate temperature prediction for both
steady-state and transient simulations [11]-[16]. These models
typically use neural networks to learn the relationship between
power maps and temperature distributions, often relying on
architectures such as convolutional neural networks (CNNs),
graph convolutional networks (GCNs), or autoencoders. While
they offer promising speedups over traditional solvers, they
suffer from several key limitations. Most notably, they require
large training datasets, often thousands of samples generated
from CTMs or FEM solvers, which can be time-consuming
and costly to obtain. Training is compute-intensive and must be
repeated from scratch when the floorplan, cooling configura-
tion, or simulation parameters change, with long GPU runs. In
some cases, additional data from IR imaging is used [17], [18],
further increasing system complexity and limiting practicality.

These challenges highlight the need for a more lightweight
and adaptable ML solution. As a result, in this paper, we
design a lightweight and data-efficient ML framework (ML-
PACT) that integrates seamlessly into existing CTM flows and
accelerates both steady-state and transient thermal simulations
without requiring large datasets or prolonged training. Our
approach applies principal component analysis (PCA) to com-
press the spatial resolution of power and temperature maps,
preserving only the most informative components. We then
learn a closed-form linear regression model in the reduced
space to predict future temperature states. This approach



requires only 15-20 CTM samples and completes training in
under a minute. Once trained, the model can efficiently predict
steady-state temperatures or simulate long transient sequences
with minimal overhead.

Our contributions are summarized as follows:

e We build a unified ML-based framework that supports
both steady-state and transient thermal simulation for
2D and 3D chip architectures, eliminating the need for
separate model setups.

o We significantly reduce conventional ML models’ data
and training requirements by using a Koopman-inspired
linear formulation, requiring only 15-20 training samples
to achieve high accuracy.

e We introduce a PCA-based dimensionality reduction
method that enhances scalability across varying grid
sizes, enabling efficient and accurate thermal predictions
even for high-resolution simulations.

Compared to a conventional CTM baseline, our framework
achieves consistent speedups of over 33x and 43x for steady-
state and transient simulations across both 2D and 3D chips
with a 245.95mm? footprint. These results demonstrate the po-
tential of our method to enhance traditional thermal modeling
flows with fast, accurate, and scalable prediction capabilities.

The remainder of the paper is organized as follows:
Section II reviews related work. Section III describes our
lightweight approach. Section IV presents experimental results
and comparisons. Section V concludes the paper.

II. RELATED WORK

ML methods appear as a fast alternative to CTMs and
FEM-based solvers for thermal simulation. These ML-based
methods offer faster inference while maintaining high accu-
racy, making them suitable for accelerating thermal analysis
during design and runtime. Some studies use infrared (IR)
camera data from fabricated chips to train their models [17]-
[19]. Although this approach achieves excellent accuracy by
learning directly from measured silicon, it relies on costly
IR imaging infrastructure and post-silicon characterization,
making it unsuitable for early design-stage prediction and
limiting broader use. To overcome this, recent works focus
on simulation-based ML models that use synthetic training
data generated from CTM or FEM solvers. These ML models
utilize various architectures such as GCN and encoder-decoder
CNNs [13]-[15], [20], [21], which are suitable for the pre-
silicon design phase. While they provide accurate and fast
thermal prediction, their major limitation is their need for large
training datasets and long GPU training runs. These datasets
are usually generated through thousands of CTM or FEM
runs, which are both time-consuming and computationally
expensive. Moreover, these models often require retraining
when there are changes in floorplans, grid sizes, or thermal
boundary conditions, making them less flexible. For example,
Ranade et al. [20] trained separate models for different chip
configurations, each requiring thousands of CTM samples.
Wen et al. [21] predicted temperature differences instead of
absolute values and had to rely on additional FEM simulations

at inference time to reconstruct the complete temperature
field. Similarly, FaStTherm [13] proposed a deep autoencoder
framework that models thermal dynamics in a latent space,
enabling long-term rollouts and improved inference stability.
However, FaStTherm still demands many training samples,
long GPU training times, and full retraining for each new
scenario, resulting in limited scalability and slow turnaround
time in iterative design processes.

Compared to prior methods that rely on large datasets
and long training times, our framework offers a fast and
lightweight alternative by combining PCA-based dimensional-
ity reduction with closed-form linear regression. This approach
significantly reduces model complexity, enabling training in
under a minute using only a small number of CTM samples.
As a result, the model can be quickly retrained when power
profiles or design configurations change. Moreover, it supports
both steady-state and transient analysis within a single unified
model, making it practical and adaptable across different chip
designs and thermal scenarios.

III. TEMPERATURE PREDICTION USING PCA-BASED
MACHINE LEARNING AND CTMS

In this paper, we design a lightweight machine learning
framework to accelerate compact thermal simulations in CTMs
using PCA-based dimensionality reduction and closed-form
linear regression. Our method addresses conventional solvers’
runtime and scalability limitations by introducing a fast, data-
efficient ML model that requires minimal setup and training
time. First, we describe the formulation of temperature simula-
tion used in CTMs. Then, we outline our PCA-based learning
framework, including how we structure the input and output
data. Finally, we detail the approach to select the number of
PCA components to balance accuracy and efficiency.

A. Temperature Simulation Formulation

The CTM constructs an equivalent thermal circuit by lever-
aging the duality between heat flow and electric current [6],
[8]. For steady-state, this network reduces to a linear system:

GT = P, (1)

where T is the vector of node temperatures (K), G is the
thermal conductance matrix (W/K), and P is the vector of
power dissipation (W). In realistic high-resolution designs,
G becomes extremely large and sparse, making even this
seemingly simple linear solve computationally demanding.
Iterative methods are typically employed, but the cost grows
rapidly with the number of thermal nodes, often becoming the
bottleneck in the thermal analysis pipeline.

For transient simulations, CTMs include the lumped thermal
capacitance at every node to capture temporal behavior. Let C
be the diagonal heat-capacity matrix (J/K). The model is:

dT(t)

c dt
where C is a diagonal matrix representing nodal heat capaci-
ties (J/K), and T'(¢), P(¢) denote the time-varying temperature

+ GT(t) = P(t), 2)



and power vectors, respectively. This formulation requires
solving an extensive linear system at every time step, and for
fine-grained temporal resolution, the cumulative cost becomes
impractical. These limitations motivate the need for alternative
formulations that retain physical accuracy while reducing
computational overhead, particularly in high-resolution 3D
simulations, which take hours of simulation even in CTMs.

B. Framework Design

Instead of solving (1) or (2) at every step, we map the
power—temperature inputs into a low-dimensional latent space
where also the transient simulation becomes linear based
on the Koopman theorem [22], which states a nonlinear
system can be switched to a linear system with a set of
transformation. Unlike prior work such as FaStTherm [13],
which uses a deep autoencoder to learn this transformation,
we adopt PCA, offering a far simpler and computationally
efficient alternative. Although PCA does not compute the full
Koopman operator and our model is Koopman-inspired linear
latent-space approximation, prior work by Ranieri et al. [23]
showed that the dominant principal components capture more
than 95% of the spatial variance in temperature distributions.
This insight makes PCA particularly well-suited for high-
resolution thermal modeling with minimal loss in accuracy.
Working in this latent space also avoids a significant cost in
steady-state runs. A direct approach for steady-state simulation
would invert the conductance matrix G. However, the size of
G grows quadratically with spatial resolution, and its explicit
inversion quickly becomes impractical. By working in the
reduced PCA space, our framework avoids this bottleneck by
solving a smaller linear problem, achieving the same result
with a fraction of the computational cost.

To formulate the model in latent form, let Tk and f’k
denote the PCA-coefficient vectors of the temperature and
power fields at time step k. The one-step transient update is
Prt1

Tpp =W +b, 3)

k

where the weight matrix W and bias b are estimated once
from a small training set. For steady-state conditions, the
relation reduces to

T = W.P +b,. )

Eq. (3) and (4) allow us to advance the system in time or
obtain static temperatures directly, eliminating the expensive
iterative solvers that dominate conventional CTM workflows.

Fig. 1 depicts the entire PCA-driven framework in both
steady-state (top) and transient (bottom). During training, the
CTM reference temperatures shown in green supervise the
model to calculate Eq. (3) and (4) weights and biases. We
collect a small set of samples (10 to 15) from CTM, train our
feature and target PCAs using them. We use the closed-form
in the PCA latent space to get the weight and bias we need for
the linear regression (Dashed blue outlines mark elements that
exist only while training, whereas dashed green outlines track
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(a) Steady-state case. At training time, the model pairs each power map
with its CTM temperature to fit the regression weights; at inference
time, only the left branch (green dashed box) is used.
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(b) Transient case. For training, the model learns a regression by using
CTM temperatures. For inference, the model receives the next-step
power map and the current temperature, and predicts the temperature
at t+1. The predicted temperature is then fed back as the next input,
enabling fast roll-out over long traces without additional CTM calls.

Fig. 1: Overview of the designed PCA-based framework: (a)
steady-state workflow, (b) transient roll-out workflow.

the inference-time path). For inference, the reference inputs
from CTM will be disconnected, and the framework outputs
its own temperature estimates, highlighted in orange. The flow
traverses three blue-bordered modules (PCA embedding, a
closed-form linear regressor, and inverse PCA reconstruction),
which provide a deterministic round-trip between the original
H xW grid and a compact latent space [V, which is the number
of PCA components. In the transient path, the temperature
predicted at time step k is concatenated with the power map



at k + 1 and routed back through the same fixed modules,
enabling fast multi-step roll-out with no additional CTM
solves. In this case, while predictions are recursive, error does
not accumulate significantly. Temperature is mostly driven by
current power, with limited dependence on previous steps due
to localized time constants. Neighboring cells also help smooth
out variations, keeping predictions stable.

While prior works have used deep networks like CNNs
or autoencoders for thermal modeling, such complexity is
unnecessary in our case. The spatial distribution of on-chip
temperature is inherently smooth due to the diffusive nature of
heat conduction, where high-frequency variations are naturally
dampened as heat spreads over space. This diffusion smooth-
ness is especially pronounced under the uniform material
properties assumed in our setup, allowing a small number
of spatial modes to capture most of the variance. PCA is
well-suited to leverage this structure, capturing the dominant
temperature patterns with only a few components. Similar to
most ML methods, our framework does not generalize across
arbitrary floorplan or boundary condition changes, and retrain-
ing is needed when the physical setup is altered. However,
due to the lightweight nature of our model and minimal data
needs, this retraining remains fast and inexpensive, making
frequent updates practical without compromising efficiency or
scalability.
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Fig. 2: Trade-off among PCA latent dimension, maximum
MSE (left axis, blue), and mean inference time per sample
(right axis, orange) for (a) 2D and (b) 3D floorplans. A modest
latent size (~50 components for 2D, ~60 components for 3D)
keeps the error near zero while minimizing runtime.

Simulation Type Steady-State Transient

Solver KLU Trap
Number of Timesteps 1 284, 500

Grid Size 100x100, 512x512  100x100, 128x128
Ambient Temperature 45°C 45°C

CPU Cores Used 16 16

Active Layer Thickness (2D) 0.10 mm 0.10 mm
Active Layer Thickness (3D) 91.44 pm 91.44 pm

TABLE I: PACT configuration simulation parameters.

C. PCA Component Selection

As discussed in Section III-B, the dimensionality reduction
introduced by PCA introduces a single key hyperparameter:
the number of principal components, denoted as N. This
value determines the size of the latent space and directly
controls the trade-off between accuracy and computational
efficiency. To select an appropriate value for [V, we conduct a
sweep across different component counts and evaluate both
the maximum mean squared error (MSE) and the average
inference time. Fig. 2 presents the results for both the 2D
scenario (2a) and the 3D scenario (2b). In both cases, we
observe a steep decrease in maximum MSE as the number
of components increases from 10 to approximately 50-70.
Beyond this range, the gains in accuracy diminish, and the
curve begins to saturate. At the same time, the inference time
grows roughly linearly with N, reflecting the increasing size
of the latent-space computations. Finding a balance between
accuracy and throughput is critical for practical inference.
Selecting too few components degrades reconstruction quality,
while selecting too many reduces the performance benefit of
the PCA-based framework. Based on this trade-off, we adopt
N = 50 for both the 2D and 3D settings. This choice lies at the
“elbow” of the MSE curve, where additional components yield
minimal accuracy improvement. At this setting, our model
keeps the worst-case temperature error under 0.5°C? while
maintaining a few seconds of inference runtime, making it
well-suited for fast, high-resolution thermal simulations.

IV. EVALUATION

In this section, we first explain our experimental setup
for the framework, followed by a detailed set of results to
demonstrate our method’s benefits.

A. Experimental Setup

We evaluate our framework on both 2D and 3D chip archi-
tectures. For the 2D case, we use the block-level floorplan of
an Intel Core i7-6950X processor. Power traces are generated
by running ten NAS parallel benchmark applications [24]
using Sniper [25] and McPAT [26]. We create the power
traces required for thermal simulation in CTM by instantiating
each component (e.g., core0, corel, etc.) in the McPAT input
configuration, enabling detailed power estimation across all
cores and system components. For the 3D case, we consider
a monolithic design with three active layers, including one
compute layer and two memory layers. In both cases, the
total chip footprint is fixed at 16.8 mm x 14.64 mm, and
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Fig. 3: CDF of MSE for steady-state prediction on (a) 2D and
(b) 3D test cases (512 x 512 grid, 375 test samples each).

the peak power used during training reaches up to 140 W.
To ensure our model can generalize to realistic high-power
scenarios, we increase the input power during inference to
trigger thermal hotspots above 130°C. Our training framework
relies on CTMs, and we use PACT [8] to generate training
labels. We are comparing our results with PACT, a recent
CTM-based tool that has been shown to be faster than other
state-of-the-art simulators. The details of the configuration
parameters of PACT for our test cases are summarized in
Table I. We evaluate 2D and 3D architectures across various
simulation resolutions, from 100 x 100 to 512 x 512 grids,
to demonstrate our model’s scalability to problem size. The
monolithic 3D testcase consists of three active layers, each
separated by dielectric layers and metal routing (BEOL), and
is mounted on a bulk silicon substrate. The total stack height
reaches 91.44um, capturing the heat propagation challenges
of monolithic 3D integration.

In our experiments, we report simulation time as a met-
ric for computational efficiency. The simulation time of our
framework consists of training time, simulation time of PACT
for training sets, and inference time. We use the mean squared
error (MSE) of all the chip temperature predictions to demon-
strate our model’s accuracy compared to the PACT ground
truth. For transient test cases, we are reporting the MSE of
the timestep with the maximum value over all timesteps to
show the worst-case prediction of our model in a transient
simulation. For a fair comparison of simulation time, we
utilize 16 CPU cores without utilizing any GPU cores for
both PACT and our framework. Finally, to demonstrate our
model’s fast training setup, we select FaStTherm [13] to
compare their model’s training time and accuracy with ours. In
this experiment, we utilize 2272 training samples (8 transient
simulations with 284 timesteps) and train the FaStTherm
model for 2000 epochs using one NVIDIA L40S.

B. Results

We start by evaluating the performance of our framework on
steady-state simulations. Our dataset consists of 390 samples
for each 2D and 3D scenario, using a grid size of 512 x 512.
From each scenario, we use 15 samples to train the model.
Training samples are selected empirically by increasing the
size of the training set to reduce the error. The cumulative
distribution function (CDF) of the MSE on the remaining test
samples is shown in Fig. 3. The results indicate that our model
maintains high accuracy, with MSE values below 0.08°C? for
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Fig. 4: PACT and our ML prediction for each layer of an input
sample of monolithic 3D design.
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Fig. 6: PACT and our ML prediction for different time steps
of an input sample for transient simulation.

2D and 0.05°C? for 3D. Fig. 4 further illustrates this accuracy
by comparing the temperature predictions of our model against
those of the CTM-based PACT framework for a representative
3D test sample. The close match between the two outputs
confirms the effectiveness of our approach in replicating CTM-
level accuracy.

For transient simulations, we evaluate 390 samples for
each 2D and 3D scenario, using a grid size of 100 x 100
with 284 timesteps per sample. To train our framework, we
simulate 10 samples for 2D and 8 for 3D using the CTM-based
PACT solver, resulting in 2840 and 2272 temperature maps,
respectively. These samples are used to learn the transient
dynamics of temperature changes. Despite the small number
of training samples, our model achieves efficient convergence,
with training times of only 7.07 seconds for the 2D case and
18.11 seconds for the 3D case. Fig. 5 presents the CDF of
the maximum MSE observed across all timesteps within each
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Fig. 9: Speedup of our framework over the PACT simulation
baseline as a function of the total number of test samples.
Our method achieves up to 49.4x acceleration for transient
3D cases after a short warm-up.

test sample. The results indicate strong predictive performance,
with the maximum MSE remaining below 0.06°C? for the
2D scenario and 0.015°C? for the 3D scenario. To further
demonstrate accuracy, Fig. 6 compares temperature predictions
from our model with the corresponding outputs from PACT
across selected timesteps. The close visual and numerical
match demonstrates that our model effectively captures the
temporal temperature behavior. To evaluate the robustness of
our model under dynamic workloads, we further simulate a

power input with frequent and abrupt changes. As shown in
Fig. 7, our model effectively captures rapid thermal responses,
achieving a worst-case MSE as low as 0.00175°C? despite the
increased temporal complexity and increasing the temperature
to up to 140°C. These results highlight our framework’s
accuracy and generalization across several transient scenarios.

To evaluate the efficiency of our framework against FaSt-
Therm, we compare the changes in MSE over training time.
As shown in Fig. 8, FaStTherm takes over 2000 seconds to
reach an MSE close to that of our PCA-based model. In
contrast, our framework achieves a significantly lower final
MSE in just under 2 seconds of training, as indicated by
the horizontal and vertical dashed blue and red lines. This
substantial speedup results from using a closed-form linear
model in the PCA space, eliminating the need for iterative
gradient-based optimization. More importantly, the accuracy of
our approach is not compromised by this speed; the resulting
MSE remains well within an acceptable range. Combined
with the strong results from steady-state and transient eval-
uations, this comparison further highlights the practicality of
our framework in real-world design scenarios where fast and
reliable thermal estimation is essential.

We assess the efficiency of our method by comparing the
full end-to-end runtime with the CTM-based PACT simulator,
including both the training (warm-up) and inference phases.
Fig. 9 illustrates the achieved speedup as a function of
the total number of test samples following a brief training
period. Across all evaluated scenarios, our framework con-
sistently demonstrates substantial improvements in runtime
performance. For steady-state simulations, it delivers a 33.3x
speedup in both 2D and 3D cases with only 15 warm-up
samples, showing strong performance even with limited data.
The gains are even more pronounced in transient simula-
tions, which are typically more computationally intensive: our
method achieves 43x and 49x speedups for the 2D and
3D settings, respectively, using just 10 warm-up samples.
These results demonstrate that our method can significantly
accelerate simulation workloads once the initial training is
completed, especially in large-scale or iterative design flows.

V. SUMMARY

This work presented a fast and accurate ML framework
for steady-state and transient temperature prediction in 2D
and 3D ICs called ML-PACT. By leveraging CTMs and
dimensionality reduction through PCA, our approach enables
low-cost inference while preserving high spatial resolution.
Unlike other ML solutions requiring extensive training data,
our framework achieves competitive accuracy with only a
few samples. Experimental results demonstrate that our model
outperforms prior approaches in inference speed, achieving
up to 49x speedup over numerical solvers, while maintaining
low prediction error across various workloads. These results
highlight the potential of our method to serve as a lightweight,
plug-in substitute for thermal estimation in chip design flows.
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VI. ARTIFACT APPENDIX
A. Abstract

This artifact provides the Python implementation for the
ML-PACT framework, a lightweight machine learning model
designed to accelerate steady-state and transient thermal simu-
lations for 2D and 3D integrated circuits of our previous com-
pact thermal simulator (CTM), PACT. The artifact provides
scripts for training the principal component analysis (PCA)
based linear regression model and for executing inference to
predict chip temperature maps. The workflow also includes
scripts to generate the necessary training and test samples
for the model by running the PACT simulator with different
input power traces. The complete artifact is available at:
https://github.com/peaclab/PACT/tree/master/MLPACT.

B. Artifact check-list (meta-information)

o Algorithm: “Principal Component Analysis (PCA)”, ”Closed-
Form Linear Regression”

« Program: "Python script”

o Transformations: "PCA (scikit-learn), linear projection”

e Model: “Trained PCA components and linear regression
weights”

« Hardware: ”Any multi-core CPU (experiments were conducted
on a 16-core system)”

o Metrics: "MSE (°C?), rollout inference time (s)”

o Output: “Per-test predicted temperature maps as CSV (and
optional PNG heatmaps)”

o Proprietary EDA tools: “PACT and Xyse for creating the
train set, which are both open-source”

« How much disk space required (approximately)?: “Depends
on the number of samples (20GB to 200 GB)”

o Publicly available?: Yes”

o Code licenses (if publicly available)?: "GNU GPLv3”

C. Description

o How to access: The artifact is available for download
from the public GitHub repository: https://github.com/
peaclab/PACT/tree/master/MLPACT.

« Hardware dependencies: A standard multi-core CPU is
required. The experiments in the paper were conducted
on a 16-core system.

o Software dependencies: The framework requires
Python 3.8+ and the packages listed in the
requirements.txt file, such as pandas, torch,
and scikit-learn. The PACT simulator is also
required to generate new datasets.

o Commercial software dependencies: None.

« Data sets: The datasets consist of power trace files, which
transform to the proper input format (.cir) and the
corresponding ground-truth temperature maps (.csv).
The data generation workflow is illustrated in Fig. 10.
User inputs are processed by PACT to generate a small
training set (10-15 samples) of input/output pairs, while
the rest of the inputs are prepared for the test set.

D. Installation

1) Clone the artifact repository from the public GitHub
URL.

2) Install the required Python packages using the provided
requirements.txt file. It is recommended to use a
virtual environment.

pip install -r requirements.txt

3) (Optional) To generate new training or test datasets, the
PACT simulator must be installed. Please follow the
installation instructions provided in the PACT source
repository.

ML-PACT

Train Model
(PCA and linear
regression)

Run PACT to
generate output
Generate input tests

for the ML model

' 10-15 input
& output files
the rest of the,
input files

Temperature |
Predictions

Fig. 10: Data generation and ML-PACT workflow.

ptraces, config
file, floorplan
file, Icf file

E. Experiment workflow
The provided script does the following:

1) Parse Train/+.cir to power tensors and
Train/*.cir.csv to temperature tensors.

2) Build samples: feature = [P;11,T}], target = Ti11.

3) Standardize, apply PCA (features/targets), solve linear
regression.

4) For each Test/«.cir, roll out predictions for simula-
tion steps from a uniform initial map (default 318.15 K).

5) Save per-file CSV to output directory (and optional
PNGs).

F. Evaluation and expected results

Running the included sample results:

o Console prints of training MSE in the target PCA space

and in the original (scaled) space.

o Per-test rollout inference time.

e CSV outputs.
Exact numbers vary with grid size, PCA dimensions, and
number of training pairs; training and inference are complete
in minutes on a CPU if PACT output is already generated.

G. Experiment customization

You can refer to the ReadMe.md file available in the
GitHub Repository.

H. Methodology
Submission, reviewing, and badging methodology:

« https://www.acm.org/publications/policies/
artifact-review-and-badging-current

o http://cTuning.org/ae/submission-20201122.html

« https://github.com/ml-eda/artifact-evaluation/



