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Abstract
Efficient resource utilization is a critical yet challenging problem in
high-performance computing (HPC) systems, particularly in GPU-
accelerated workloads. GPUs have become indispensable in modern
datacenters, powering applications in AI, scientific computing, and
large-scale simulations, but their potential is often hindered by im-
balances in resource allocation and utilization. These inefficiencies
across GPUs and nodes can lead to significant performance degra-
dation and energy wastage. While existing works analyze resource
utilization at a coarse level, they often fail to capture the intricate
temporal and spatial imbalances present in multi-node GPU jobs.
In this work, we analyze GPU jobs executed on the Perlmutter
supercomputer, a GPU-accelerated system at the National Energy
Research Scientific Computing Center (NERSC), using telemetry
data from one month of operation in 2024. We identify inefficiencies
in how resources are allocated and utilized across GPU nodes and
GPUs within nodes. We propose novel methodologies to quantify
these imbalances using refined metrics that capture both spatial
and temporal variations in resource utilization. Our analysis reveals
that GPU utilization is generally well-balanced temporally for most
jobs, with no significant temporal imbalances observed. However,
GPU memory utilization remains consistently low across many
jobs, highlighting opportunities to optimize resource allocation and
improve memory usage efficiency.
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1 Introduction
High-Performance Computing (HPC) systems have become indis-
pensable for accelerating scientific discovery and technological
innovation, enabling large-scale simulations and data-intensive
computations across disciplines such as astrophysics, genomics, cli-
mate modeling, and materials science. Over the last decade, the shift
from traditional CPU-centric architectures toward heterogeneous
systems integrating GPUs and other specialized accelerators has
played a pivotal role in meeting the escalating demands of modern
workloads, including machine learning (ML) and deep learning (DL)
applications [7, 9, 12, 20].

Despite their growing ubiquity, GPU-accelerated systems pose
unique challenges in effective resource allocation, scheduling, and
performance optimization [11, 13, 25]. As job compositions become
increasingly diverse—with various codes and libraries imposing
heterogeneous demands on GPUmemory, compute cores, and inter-
connect bandwidth—achieving high utilization across all resources
becomes a non-trivial endeavor [17]. Even within a single node
allocated to a single job, imbalances can arise among the multi-
ple GPUs due to variations in parallel efficiency, communication
overheads, and irregular memory access patterns [3, 8]. These in-
ternal imbalances can lead to suboptimal performance and resource
underutilization, ultimately increasing both the runtime and the
energy cost of the job.

Over the past decade, a broad range of workload characteriza-
tion studies have aimed to illuminate inefficiencies in HPC envi-
ronments. Early efforts largely focused on CPU-centric clusters,
analyzing batch logs to reveal patterns in job runtimes, queue wait
times, and memory usage. For example, Bang et al. [2] performed
feature selection and clustering on HPC workloads to detect un-
derutilized resources and frequent job patterns, while Patel et al.
[21] conducted a long-term trend analysis on Argonne supercom-
puters (e.g., Intrepid, Mira) to show that mid-sized jobs gradually
dominated the system’s node hours, highlighting challenges in
scheduling and provisioning for evolving CPU workloads. These
works, however, primarily address CPU usage, memory capacity,
and I/O usage without delving deeply into fine-grained GPU uti-
lization or node-level GPU resource telemetry.

More recent research recognizes that GPU-accelerated HPC sys-
tems introduce additional complexities. For instance, Li et al. [16]
examined the Perlmutter system at NERSC to show that both CPUs
and GPUs were frequently underutilized, with many GPU-enabled
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jobs consuming less than half of the available memory capacity.
Similarly, Shin et al. [22] studied a pre-exascale GPU cluster, fo-
cusing on node-level power and thermal metrics. They uncovered
substantial temperature-induced performance bottlenecks and par-
tial GPU utilization, demonstrating that new instrumentation (e.g.,
power monitors) can yield deeper insights into job inefficiencies.
Yet, such studies often present GPU usage data at a node-level
granularity, leaving per-GPU temporal load imbalances underex-
plored. Additionally, newly emerging HPC+ML workloads pose
fresh scheduling challenges—jobs may be short but highly GPU-
intensive, or exhibit large memory footprints with sporadic usage
patterns [6].

To address these gaps, we combine job-level metadata (e.g.,
Slurm logs with queue times, node allocations) and time-series GPU
telemetry from NVIDIA’s Data Center GPU Manager (DCGM) [19].
This strategy enables a finer-grained analysis of howmultiple GPUs
within the same node are actually utilized over time, highlighting
potential spatial imbalance (uneven load distribution across GPUs)
and temporal imbalance (fluctuating usage within each GPU over
the job’s runtime). This analysis uncovers inefficiencies in GPU
resource utilization, providing a foundation for future scheduling
improvements, such as better load balancing across GPUs, dynamic
resource scaling, and optimized backfilling policies, to enhance
performance and energy efficiency in modern HPC environments.
Our contributions are as follows:

• We analyze detailed DCGM telemetry data to study GPU
resource utilization in large-scale HPC workloads at NERSC.

• We introduce refined metrics for quantifying spatial and
temporal imbalances in GPU workloads, capturing intra-
and inter-node utilization disparities.

• We provide a systematic approach for measuring imbalance
factors, offering a detailed assessment of workload inefficien-
cies in production supercomputing environments.

In the remainder of this paper, we discuss how our methods
bridge the gap between coarse system-wide measurements and the
fine-grained view required for truly effective resource management.
Although our focus is on Perlmutter, the methodologies and ob-
servations generalize to other heterogeneous HPC environments
seeking to optimize GPU utilization, job throughput, and overall
energy efficiency.

2 Related Work
Researchers characterize HPC I/O from various angles, initially
focusing on simulation-based workloads but now expanding to in-
clude deep learning (DL) and machine learning (ML). Early efforts
develop lightweight logging frameworks (e.g., Darshan) to correlate
application metrics with system logs for I/O performance anomaly
detection [4]. These studies reveal that while checkpoint/restart of-
ten dominates simulation workloads, ML workloads exhibit diverse
patterns, particularly read-intensive or small-batch writes [14]. Ad-
ditionally, studies show that ML and mixed workloads in HPC
centers frequently underutilize node resources, motivating more
adaptive resource-sharing approaches [16].

Several projects propose scheduling policies for heterogeneous
workloads, recognizing that uniform time-sharing often underuti-
lizes GPUs if applications fail to saturate hardware [10, 18]. His-
torically, GPU-sharing research focuses on time-slicing or best-
effort space sharing, where standard approaches (e.g., MPS) risk
interference [24]. Recently, NVIDIA’s Multi-Instance GPU (MIG)
introduced compute and memory isolation, which prevents cross-
application interference and improves utilization. However, slicing
constraints may degrade single-job throughput or increase energy
consumption [15].

These trade-offs align with broader trends in resource disag-
gregation, where partitioning memory or hardware aims to boost
cluster efficiency [18]. However, standard approaches often ne-
glect ML-driven HPC usage, where datasets and models introduce
complex read–write patterns. Current studies examine how GPU
partitioning complements I/O optimizations, staging policies, and
scheduling heuristics for emerging AI workflows [14, 16].

Ephemeral HPC resource provisioning is another strategy for
handling ML workloads with fluctuating hardware demands. Dy-
namic resource allocation for large-scale training and concurrency
scheduling boosts throughput by adapting to job phases [1, 23].
Such efforts emphasize the importance of flexible resource provi-
sioning alongside robust I/O strategies. Our study complements
these directions by analyzing GPU resource utilization and per-
formance inefficiencies across representative workloads, offering
insights to inform dynamic scheduling strategies.

3 Methodology
To analyze GPU resource utilization patterns and identify inefficien-
cies in HPC workloads, we integrate time-series telemetry from the
DCGMwith job-level metadata from the Slurm scheduler. This com-
bined dataset enables a detailed assessment of workload behavior
across both spatial and temporal dimensions.

3.1 Dataset Overview
Our study examines GPU workloads executed on Perlmutter during
July 2024. Perlmutter consists of 1,536 GPU-accelerated nodes, each
equipped with four NVIDIA A100 GPUs with 40 GB of HBM2 mem-
ory. These GPUs are interconnected within nodes using NVIDIA
NVLink and across nodes via HPE’s Cray Slingshot network. The
dataset includes DCGM telemetry, which provides periodic snap-
shots of GPU activity, such as utilization, memory activity, power
consumption, and interconnect traffic. These metrics are sampled at
10-second intervals during job execution. We also integrate Slurm
job metadata, capturing job submission and completion times, run-
time durations, allocated resources, and job exit statuses. To focus
on relevant workloads, we filter the dataset to include only GPU
jobs submitted under the regular Quality of Service (QoS) category,
resulting in 118,276 jobs. This subset represents only a fraction of
the total jobs executed on Perlmutter during the study period and
may not fully capture the entire workload landscape.

Each job may allocate one or more GPU nodes, where each node
contains four GPUs. Within a node, each GPU is identified by a
unique gpu_id ranging from 0 to 3. For multi-node jobs, telemetry
streams are recorded separately for each ⟨node, gpu_id⟩ pair. The
telemetry data for a single GPU is represented as:
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𝑋 𝑗,𝑛,𝑔 ∈ R𝑀×𝑇 (1)

where 𝑗 denotes the job identifier, 𝑛 represents the node, and
𝑔 is the GPU identifier. Here, 𝑀 corresponds to the number of
telemetry metrics, and 𝑇 represents the job duration in seconds,
which determines the time series length. If a job terminates early,
telemetry records exist only up to that point.

3.2 DCGMMetrics
DCGM provides fine-grained telemetry for each GPU, capturing
compute activity, memory performance, network traffic, and power
consumption. Table 1 summarizes the key metrics used in our
analysis.

3.3 Feature Extraction
To extract essential time-series characteristics, we use the TS-
FRESH [5] package. TSFRESH automates the extraction of a diverse
set of features from time-series data, enabling detailed workload
analysis. Specifically, we extract 17 features for each DCGM metric,
resulting in a total of 408 feature columns after processing. These
features include standard summary statistics such as mean, stan-
dard deviation, and coefficient of variation, which provide insights
into the central tendency and variability of utilization metrics. Ad-
ditionally, we compute the linear trend of GPU activity over time
to capture overall patterns of increasing or decreasing usage. The
mean absolute change (MAC) quantifies fluctuations between con-
secutive measurements, offering a finer-grained understanding of
temporal variability. These features help identify workload charac-
teristics and potential inefficiencies in resource utilization, serving
as a foundation for further analysis. After feature extraction, we
represent each job as a set of feature vectors, where each vector
corresponds to a physical GPU allocated to that job across all as-
signed GPU nodes. Specifically, for a job 𝑗 running on node 𝑛 and
utilizing GPU 𝑔, we define the extracted feature representation as:

𝑓𝑗,𝑛,𝑔 ∈ R𝐾 (2)

where 𝐾 is the total number of extracted features per GPU.
This representation reduces data volume while preserving essential
workload characteristics. We store the processed data in Parquet
format for efficient storage and retrieval in our analysis pipeline.

4 Dataset Characteristics Analysis
To evaluate peak resource demands and utilization in GPU work-
loads, we analyze the maximum values of key telemetry metrics,
including GPU utilization, memory utilization, and power consump-
tion. These peak values provide insights into workload intensity and
variations in resource allocation efficiency. We integrate job-level
metadata from Slurm, including job duration and queue wait time,
to analyze scheduling and execution characteristics. This integra-
tion ensures an accurate linkage between jobs and their resource
usage, providing a comprehensive evaluation of system perfor-
mance. Table 2 presents summary statistics for all jobs, capturing
peak GPU utilization, memory utilization, and power consumption
at any point during execution. On average, jobs exhibit a GPU uti-
lization of 71.77%, while memory utilization remains significantly

lower at 28.64%, indicating that many workloads underutilize avail-
able memory resources. GPU memory copy utilization also varies
widely, with a mean of 41.98% and a standard deviation of 40.01%,
indicating significant variability in the utilization of the GPU’s ded-
icated copy engine (DMA) for memory transfer operations across
workloads.

We divide jobs into groups based on their duration and the num-
ber of allocated nodes, as detailed in Tables 3a and 3b. Table 3a
shows that 78.30% of jobs run for less than one hour, and 93.42%
complete within six hours. Only 2.60% of jobs exceed 12 hours;
however, these longer jobs account for 27.14% of the total GPU
node hours, highlighting their significant contribution to overall
resource consumption despite their lower frequency in the work-
load. Table 3b highlights that 80.12% of jobs allocate a single GPU
node, while jobs involving more than 128 nodes account for only
0.15% of the total.

5 Resource Utilization of Jobs
Figures 1 (a) and (b) illustrate the distribution of GPU utilization
and GPU memory utilization across all jobs, providing insights into
resource allocation efficiency. The utilization bins represent the
maximum utilization reached at any point during job execution.
For instance, if a job falls into the (0, 15]% utilization bin, it means
the job never exceeded 15% utilization throughout its runtime.

Themajority of jobs (62.75%) reach at least 75%GPU utilization at
some point, contributing to 80.01% of total node hours, suggesting
that most jobs efficiently utilize GPU compute resources. Although
14.11% of jobs remain at 0% GPU utilization, these jobs contribute
to only 3.06% of total node hours, thus the overall impact on system-
wide resource consumption is limited.

GPUmemory utilization remains significantly lower acrossmany
workloads compared to GPU compute utilization. Only 15.74% of
jobs reach 75% or higher memory utilization, contributing to 20.40%
of total node hours. In contrast, 37.12% of jobs never exceed 15%
memory utilization, accounting for 37.03% of total node hours,
highlighting widespread underutilization of available GPU memory.
8.85% of jobs reports 0% GPU memory utilization, meaning they
never engage GPU memory during execution. However, these jobs
account for only 0.32% of total node hours, indicating that their
impact on overall resource consumption is minimal. The presence
of fully idle GPUs suggests cases where jobs allocate GPU resources
but fail to use them effectively, potentially due to workload mis-
configuration or application characteristics that do not require
significant memory usage. While these idle cases affect only a small
fraction of node hours, the broader trend of low memory utilization
presents an opportunity for optimizing workload placement and
refining memory allocation strategies.

6 Quantifying Temporal and Spatial Imbalance
in GPUWorkloads

Analyzing resource utilization in HPC workloads requires not only
measuring overall GPU usage but also understanding how resources
fluctuate over time and across allocated GPUs. Imbalanced utiliza-
tion can lead to inefficient workload execution, resource contention,
and prolonged queue wait times. To address these inefficiencies,
we introduce temporal imbalance factors, which measure variations
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Table 1: Key DCGMmetrics used in this study.

Metric Name Description
dram_active Percentage of time GPU’s HBM2 memory is actively serving read/write requests.
sm_active Fraction of cycles during which at least one warp was active on any Streaming

Multiprocessor.
tensor_active Fraction of cycles during which the tensor core is executing tensor operations.
gpu_utilization Overall GPU utilization percentage, including SM activity and memory transfers.
fb_free Free frame buffer memory, in MB, representing available GPU DRAM.
fb_used Amount of frame buffer memory currently in use (MB) by the GPU.
memory_utilization Percentage of GPU DRAM used: fb_used

fb_used+fb_free × 100
NVLink Traffic Total data transferred over NVLink, measuring intra-node GPU communication

(bytes/sec).
power_usage GPU power consumption in watts.
mem_copy_utilization Utilization of the GPU copy engine (i.e., fraction of time the dedicated memory

copy units are active)

Table 2: Summary Statistics for All Jobs

Metric Mean Std Min Max

Job Duration (hrs) 1.64 3.70 0.00 24.00
Queue Wait Time (hrs) 0.04 0.07 0.00 1.88
GPU Utilization (%) 71.77 37.76 0.00 100.00
GPU Memory Utilization (%) 28.64 30.27 0.00 100.00
GPU Memory Copy Utilization (%) 41.98 40.01 0.00 100.00
Power Usage (W) 244.32 134.11 48.99 604.44
Allocated Nodes 3.14 16.88 1.00 1536

Table 3: Job Duration and GPU Node Allocation Distribution with GPU Node Hours

(a) Job Duration Distribution

Duration (hrs) Jobs (%) GPU Node Hours (%)

(0, 1] 78.30 12.24
(1, 3] 11.32 20.54
(3, 6] 3.80 15.06
(6, 12] 3.98 25.03
(12, 24] 2.60 27.14

(b) GPU Node Allocation Distribution

GPU Nodes Jobs (%) GPU Node Hours (%)

[1] 80.12 17.80
(1, 4] 13.28 21.35
(4, 16] 4.33 22.54
(16, 64] 1.85 21.59
(64, 128] 0.28 9.58
(128, 1536] 0.15 7.14

in GPU utilization over the course of a job, and spatial imbalance
factors, which quantify disparities in utilization across GPUs allo-
cated to the same job. These metrics provide insights into workload
execution patterns, helping identify opportunities for improved
scheduling and resource allocation.

6.1 Temporal Imbalance Factor Calculation
To quantify temporal imbalance, we explore multiple formulations
that leverage feature-extracted representations of GPU resource
utilization.

One approach is the coefficient of variation (CV), which measures
the standard deviation relative to the mean utilization over time
for each GPU. This metric captures fluctuations in resource usage,
where a higher CV value indicates greater variation and less consis-
tent utilization. For jobs that span multiple GPUs across nodes, the
job-level temporal imbalance factor is computed by first calculating
the CV for each GPU and then selecting the highest CV value across
all GPUs and nodes allocated to the job:

Temporal Imbalance Factor (CV) = max
𝑔∈𝐺,𝑛∈𝑁

(
𝜎 (𝑈𝑔,𝑛)
𝜇 (𝑈𝑔,𝑛)

)
, (3)

where 𝑈𝑔,𝑛 represents the time-series utilization of GPU 𝑔 on
node 𝑛, 𝜎 (𝑈𝑔,𝑛) is the standard deviation, and 𝜇 (𝑈𝑔,𝑛) is the mean
utilization.

Another method involves analyzing the linear trend of utilization
over time using linear regression. The slope of the fitted regression
line indicates whether utilization increases or decreases, helping
quantify variations in workload execution. A steep positive or neg-
ative slope suggests dynamic workload phases with significant
variations in GPU usage. For jobs running on multiple GPUs and
nodes, the job-level temporal imbalance factor is determined by
selecting the maximum trend value across all GPUs and nodes:

Temporal Imbalance Factor (Trend) = max
𝑔∈𝐺,𝑛∈𝑁

(��slope(𝑈𝑔,𝑛)��) .
(4)
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Figure 1: Distribution of jobs and node hours for GPU utilization and GPU memory utilization.

Additionally, we consider the MAC, which captures the average
change between consecutive utilization values, providing finer-
grained insights into GPU utilization fluctuations. Similar to the
other metrics, the maximum MAC value across all GPUs and nodes
is used to compute the job-level temporal imbalance factor:

Temporal Imbalance Factor (MAC) = max
𝑔∈𝐺,𝑛∈𝑁

(
1
𝑇

𝑇 −1∑︁
𝑡=1

|𝑈𝑔,𝑛 (𝑡 + 1) −𝑈𝑔,𝑛 (𝑡 ) |
)
.

(5)
Each of these formulations captures distinct aspects of tempo-

ral imbalance, offering a comprehensive perspective on workload
execution patterns.

To provide a holistic measure of temporal imbalance, we combine
the three individual metrics—CV, Trend, and MAC—into a single
merged temporal imbalance factor. Each metric is first normalized to
the [0, 1] range using Min-Max scaling to ensure that differences in
scale do not distort the final result. We assign a lower weight to the
Trend metric because it often introduces noise when fluctuations
obscure clear increasing or decreasing patterns. To mitigate this, we
emphasize CV and MAC, which more directly capture utilization
variability. The merged temporal imbalance factor is computed as:

Merged TIF = 0.4 × Normalized CV + 0.4 × Normalized MAC+
+ 0.2 × Normalized Trend. (6)

This formulation ensures that temporal imbalance is calculated
across all GPUs and nodes for each job, prioritizing short-term
fluctuations and overall variability while maintaining the trend
component as a secondary contributor. Figure 2 illustrates the tem-
poral imbalance factors for GPU and memory utilization. The plot
for GPU utilization (Figure 2a) demonstrates that most jobs exhibit
low temporal imbalance, as evidenced by the sharp rise in the CDF,
indicating consistent usage patterns across the majority of work-
loads. Memory utilization (Figure 2b) shows a similar trend, with
low temporal imbalance observed for the majority of jobs. While
some jobs exhibit slightly elevated temporal imbalance values, these
represent a small fraction of the total workload and do not indi-
cate a significant long tail effect. Additionally, analyses of other

GPU resource metrics, including sm_active, tensor_active, and
dram_active, reveal similar patterns. Temporal imbalance remains
low across the majority of jobs for these metrics, suggesting bal-
anced resource usage over time in most cases. However, a subset
of jobs with higher temporal imbalance may indicate irregular or
fluctuating workload behavior, warranting further exploration to
identify underlying causes or specific workload characteristics.

6.2 Spatial Imbalance Factor Calculation
While temporal imbalance reflects changes in GPU utilization over
time, spatial imbalance measures how evenly GPU utilization is
distributed across allocated resources both within and across nodes.
We define two types of spatial imbalance:

Intra-Node Imbalance: Intra-node imbalance quantifies GPU uti-
lization disparities among GPUs within the same node. To capture
this, we compute the maximum intra-node imbalance across all
nodes allocated to a job. The first metric, the normalized range (NR),
is defined as:

Intra-Node Spatial Imbalance (NR) = max
𝑛∈𝑁

max𝑔∈𝐺𝑛 𝑈𝑔 − min𝑔∈𝐺𝑛 𝑈𝑔

max𝑔∈𝐺𝑛 𝑈𝑔
,

(7)
where𝐺𝑛 represents the set of GPUs within node 𝑛, and𝑈𝑔 is the

utilization of GPU 𝑔. This ensures that for jobs spanning multiple
nodes, we retain the maximum observed intra-node imbalance.

We also compute the maximum variance of GPU utilization
within nodes for each job:

Intra-Node Spatial Imbalance (Variance) = max
𝑛∈𝑁

𝜎2 (𝑈𝑔) ∀𝑔 ∈ 𝐺𝑛 .
(8)

Inter-Node Imbalance: Inter-node imbalance captures disparities
in GPU utilization acrossmultiple nodes allocated to a job. Similar to
intra-node imbalance, we retain themaximum inter-node imbalance
observed among the nodes allocated to each job. The normalized
range (NR) across nodes is defined as:
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(a) GPU Utilization (b) Memory Utilization

Figure 2: CDF and PDF plots of temporal imbalance factors for various GPU metrics. The plots illustrate the distribution of
imbalance levels across jobs, emphasizing variations in GPU and memory utilization.

Inter-Node Spatial Imbalance (NR) =
max𝑛∈𝑁 𝑈𝑛 −min𝑛∈𝑁 𝑈𝑛

max𝑛∈𝑁 𝑈𝑛
,

(9)
where𝑈𝑛 is the average GPU utilization of node 𝑛, and 𝑁 is the

set of nodes allocated to job 𝑗 .
Similarly, we compute the maximum variance of GPU utilization

across nodes for each job:

Inter-Node Spatial Imbalance (Variance) = 𝜎2 (𝑈𝑛) ∀𝑛 ∈ 𝑁 .
(10)

To provide a holistic perspective on workload distribution, we com-
pute merged spatial imbalance factors by averaging the normalized
range and variance metrics for both intra-node and inter-node
imbalances:

Merged Intra-Node Spatial Imbalance =
Intra-Node NR + Intra-Node Variance

2
.

(11)

Merged Inter-Node Spatial Imbalance =
Inter-Node NR + Inter-Node Variance

2
.

(12)
These formulations ensure that the most significant spatial imbal-

ance observed within or across nodes is retained, providing a more
accurate characterization of workload distribution inefficiencies.

Figure 3 visualizes the cumulative distribution function (CDF)
and probability density function (PDF) for the merged intra-node
and inter-node spatial imbalance factors for selected GPU utiliza-
tionmetrics. The CDFs demonstrate that the majority of jobs exhibit
low intra-node and inter-node spatial imbalance values, indicating
balanced resource usage in most cases. However, the right tails
of the PDFs highlight the presence of outliers, where substantial
disparities exist in resource usage either within or across nodes.
Notably, GPU utilization imbalance tends to be higher compared to
memory utilization imbalance, likely due to varied workload char-
acteristics and differences in computation intensity or GPU affinity
within nodes. Furthermore, intra-node imbalance is generally more
pronounced than inter-node imbalance, indicating that disparities

in resource usage are more common among GPUs within the same
node than across nodes.

6.3 Correlation Analysis of Temporal and
Spatial Imbalances

The correlation matrix in Figure 4 provides a quantitative analysis
of the relationships between temporal imbalance, spatial imbalance
(intra-node and inter-node), resource utilization metrics, and job-
level characteristics such as node hours. A key observation is the
moderate negative correlation (-0.42) between temporal imbalance
in memory utilization and maximum GPU utilization, suggesting
that jobs with stable memory usage tend to achieve better GPU
efficiency. This insight implies that improving memory utilization
stability could enhance GPU performance for certain workloads.
Furthermore, intra-node and inter-node spatial imbalances for both
GPU and memory utilization are strongly correlated (0.89 for intra-
node and 0.55 for inter-node), indicating that resource disparities
within nodes often extend across nodes. Node hours show weak or
negligible correlations with imbalance factors and utilization met-
rics, revealing that larger jobs (in terms of node usage) are not inher-
ently more or less imbalanced, pointing to other workload-level fac-
tors influencing imbalance. These findings highlight the potential
for actionable improvements in resource allocation and scheduling
strategies. For instance, jobs with high temporal memory imbalance
or significant spatial imbalance could be prioritized for improved
placement or workload consolidation to reduce inefficiencies. Ad-
dressing intra-node imbalances through fine-grained scheduling
could also mitigate cascading effects that exacerbate inter-node dis-
parities. Additionally, further investigation into workload-specific
patterns of imbalance could inform strategies to dynamically adjust
resource allocations, ultimately enhancing overall system efficiency
and throughput for GPU-accelerated HPC systems.

7 Conclusion
This work analyzes GPU resource utilization in HPC workloads on
the Perlmutter supercomputer using DCGM telemetry and Slurm
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(a) Intra-Node GPU Utilization (b) Inter-Node GPU Utilization

(c) Intra-Node Memory Utilization (d) Inter-Node Memory Utilization

Figure 3: CDF and PDF plots of merged intra-node and inter-node spatial imbalance factors for GPU and memory utilization
metrics.

Figure 4: Correlation matrix showing relationships between temporal and spatial imbalance factors, maximum GPU and
memory utilization, and node hours.
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metadata, introducing refined metrics to quantify temporal and spa-
tial imbalances and identify workload inefficiencies. Our analysis
reveals that GPU compute utilization is generally well-balanced
across most jobs, while memory utilization remains consistently
low in over 50% of workloads, highlighting opportunities to better
understand workload memory requirements and optimize resource
provisioning strategies. Temporal imbalances are minimal for the
majority of jobs, although outliers with significant fluctuations
suggest that dynamic scheduling or workload adjustments could
enhance performance. Spatial imbalances expose disparities in GPU
usage both within and across nodes, with GPU utilization imbalance
being more pronounced than memory utilization.

While this study highlights the prevalence of temporal and spa-
tial imbalances, a quantitative assessment of their impact on system
performance remains a key area for future research. Addressing
these imbalances may require strategies such as improved schedul-
ing policies, dynamic resource allocation, and targeted workload
profiling. Future work will expand the scope to analyze temporal
and spatial imbalances across a broader range of GPUworkloads, as-
sessing their impact on system-level performance. Additionally, we
aim to explore the prerequisites, trade-offs, and practical strategies
to mitigate imbalances, including how these interventions could
enhance efficiency and resource utilization. This would provide a
clearer understanding of the actionable steps needed to optimize
GPU-accelerated HPC systems and quantify the performance im-
provements achievable through such efforts.
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