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Intelligent Resource Provisioning and Allocation 
Strategies in High Performance Computing

● Reduce the resource waste and increase the QoS in HPC systems 
● Address both under and over requests in batch job submissions
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Introduction

The framework predictions show reduction in the underprediction of 
execution time, memory, and CPU resources to less than 2%. 
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Providing online suggestions to the HPC system users after 
predicting the execution time, maximum memory size and number 

of processors requirements of batch job submissions

● Training different ML models for each cluster
○ XGBoost & Random Forest Regression

● Time based train-time split configuration
● Performance metrics:

● HPC users can benefit from this recommendation system by predicting their jobs’ resource requirements before submission.
● We aim to test the framework success on a workload manager simulator and a production HPC system with real user inputs.
● For future work, we will investigate applications’ resource utilization variance and the resource contention among compute nodes.

Framework Design

● Group similar jobs according to the user, job, and account 
names along with resource requests and wallclock time limits

● Apply data driven strategies after model training to prevent the 
underestimation of resources

Overprediction of maximum memory size and number of processor 
requirements of jobs are reduced compared to the user requested values.
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Resource Prediction
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Users manually request
● Execution Time
● Number of Processors
● Maximum Memory Size
● Computing Nodes
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