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Introduction

Experimental Methodology
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® Reduce the resource waste and increase the QoS in HPC systems

e Address both under and over requests in batch job submissions ® Time based train-time split configuration
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Conclusion & Future Work

® HPC users can benefit from this recommendation system by predicting their jobs’ resource requirements before submission.
® We aim to test the framework success on a workload manager simulator and a production HPC system with real user inputs.
e For future work, we will investigate applications’ resource utilization variance and the resource contention among compute nodes.
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