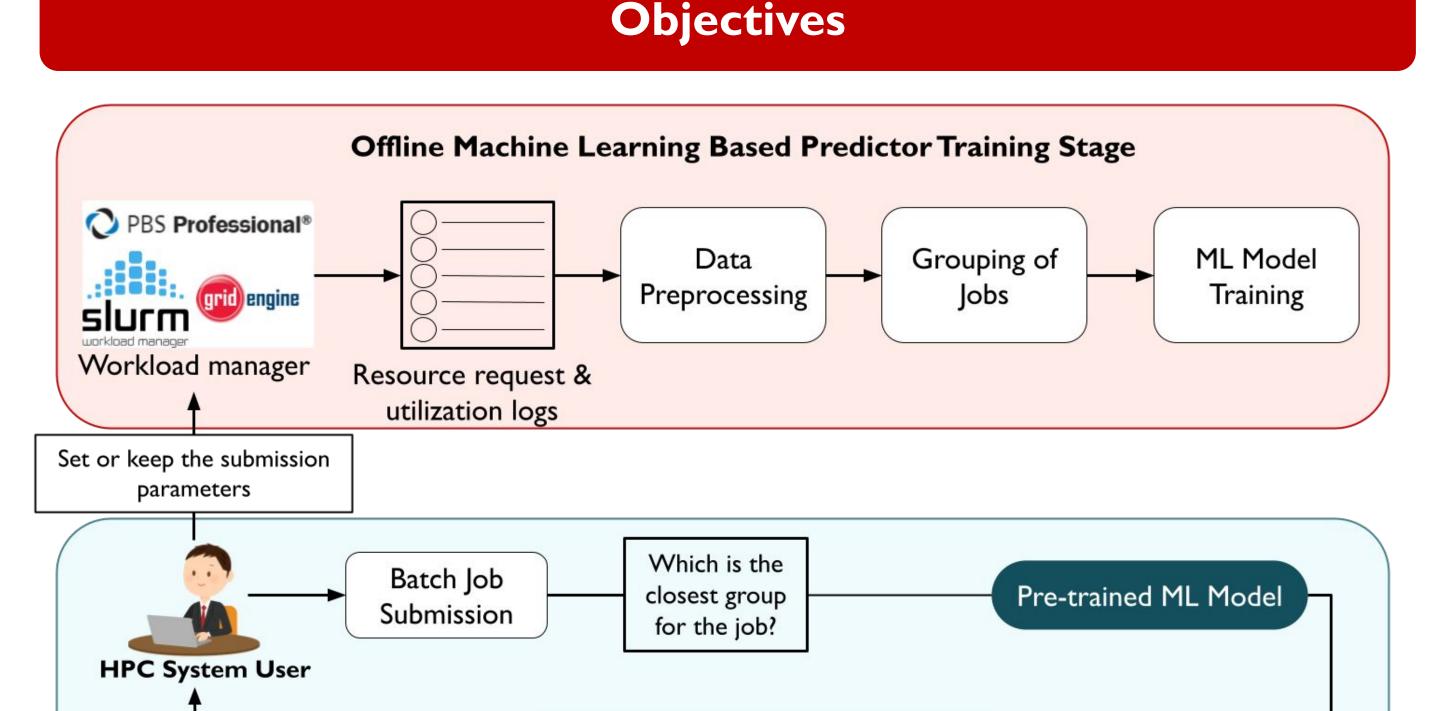


Intelligent Resource Provisioning and Allocation Strategies in High Performance Computing

Beste Oztop¹, Benjamin Schwaller², Vitus J. Leung², Jim Brandt², Brian Kulis¹, Manuel Egele¹, Ayse K. Coskun¹ ¹Electrical and Computer Engineering Department, Boston University, Boston, MA, 02215 ²Sandia National Laboratories, Albuquerque, NM, 87123

Introduction Underestimation Early job terminations Users manually request Reduced system efficiency **Execution Time** Number of Processors Overestimation Maximum Memory Size Computing Nodes Increased job waiting time Idle resources

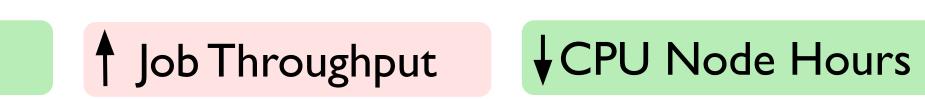
- Reduce the resource waste and increase the QoS in HPC systems
- Address both under and over requests in batch job submissions



Providing online suggestions to the HPC system users after predicting the execution time, maximum memory size and number of processors requirements of batch job submissions

Suggestion on resource request

Online Resource Usage Suggestion Mechanism



Framework Design

- Group similar jobs according to the user, job, and account names along with resource requests and wallclock time limits
- Apply data driven strategies after model training to prevent the underestimation of resources

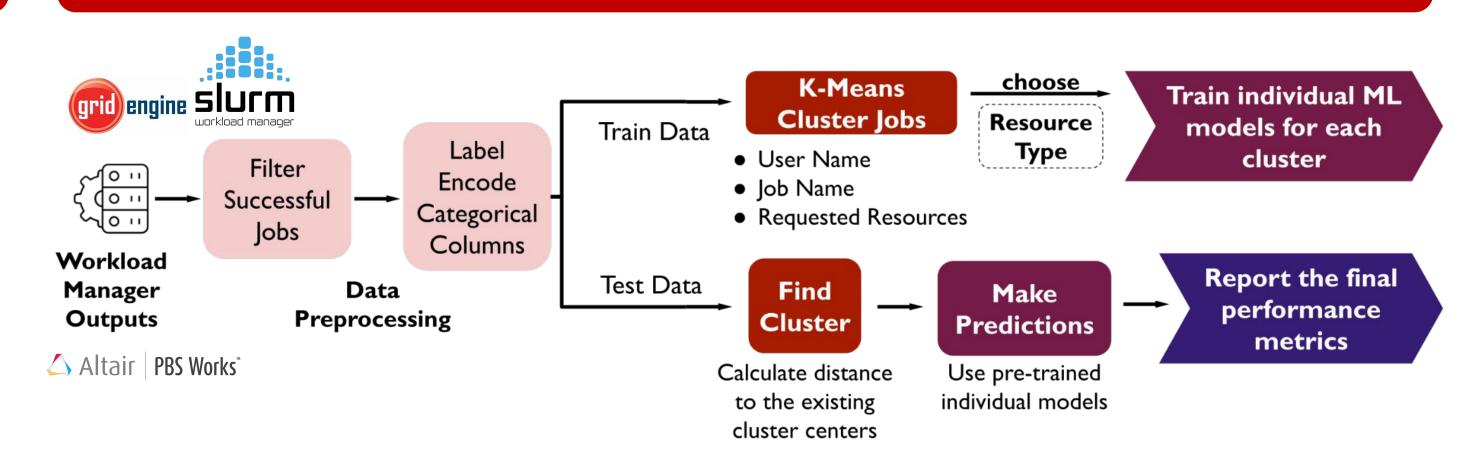
Resampling

Changing the training dataset distribution

Buffering

Adding an offset (2σ) to model predictions

Experimental Methodology



- Training different ML models for each cluster
 - XGBoost & Random Forest Regression
- Time based train-time split configuration
- Performance metrics:

Total # of Underpredictions Underprediction Ratio = Total # of Jobs

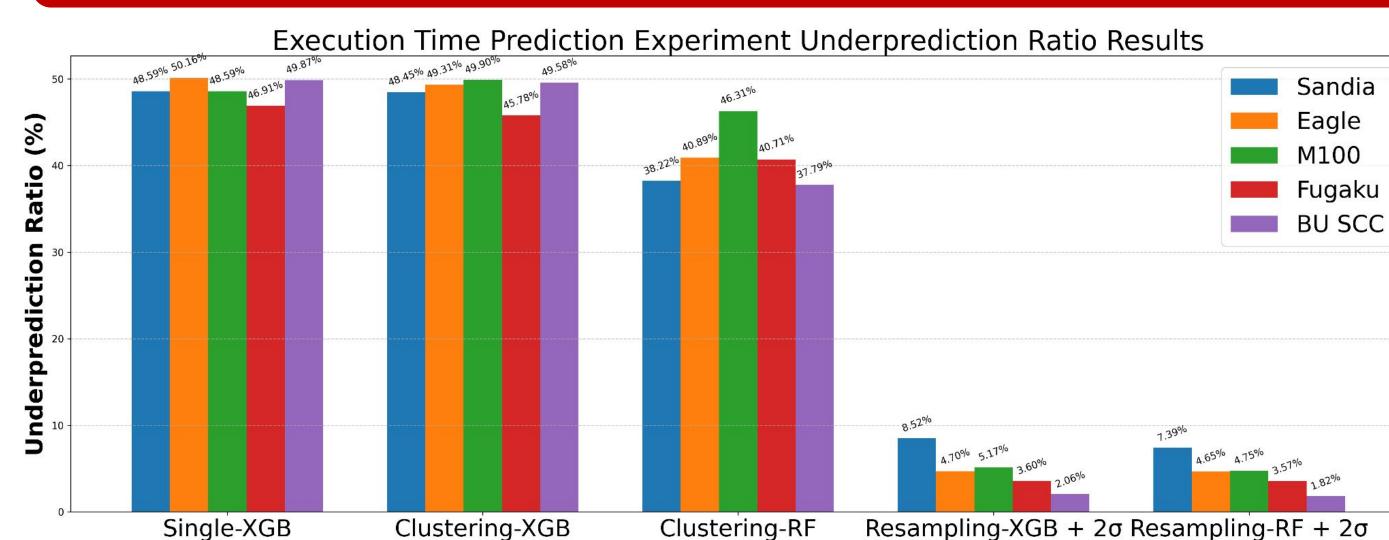
Resource Prediction Overestimation Factor = Actual Resource Utilization

Real World Workload Traces Sandia

NREL Eagle [1] MI00 [2]

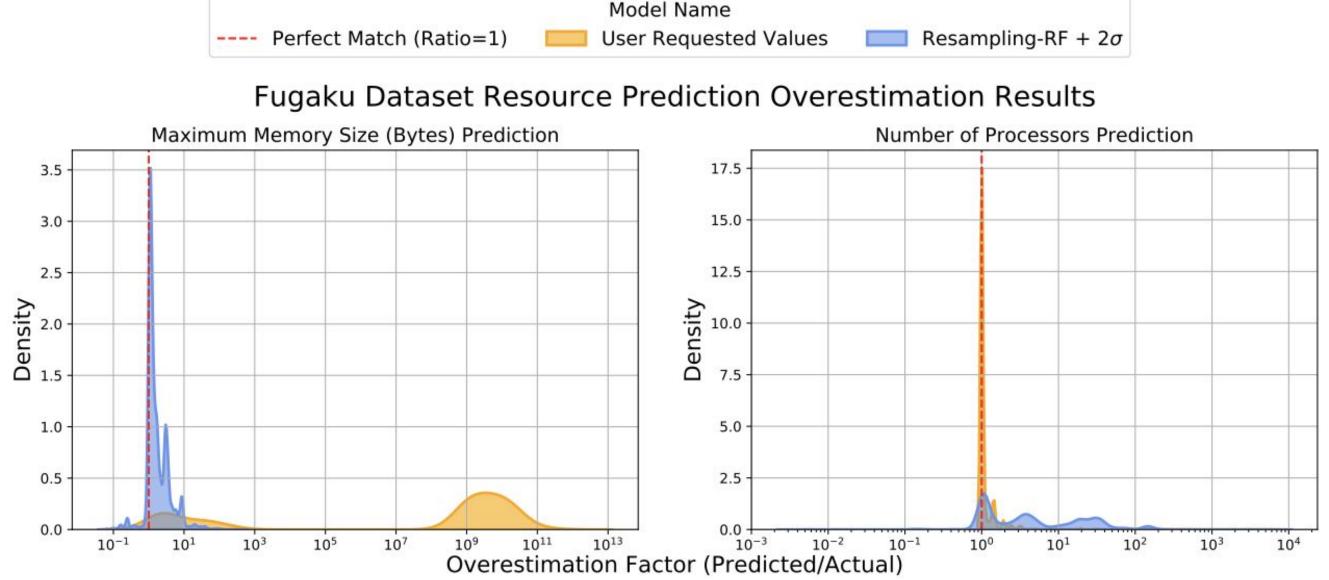
Fugaku [3] BU SCC

Results



The framework predictions show reduction in the underprediction of execution time, memory, and CPU resources to less than 2%.

Method



Overprediction of maximum memory size and number of processor requirements of jobs are reduced compared to the user requested values.

Conclusion & Future Work

- HPC users can benefit from this recommendation system by predicting their jobs' resource requirements before submission.
- We aim to test the framework success on a workload manager simulator and a production HPC system with real user inputs.
- For future work, we will investigate applications' resource utilization variance and the resource contention among compute nodes.

Acknowledgement

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

References

[1] Menear, K., Nag, A., Perr-Sauer, J., Lunacek, M., Potter, K., & Duplyakin, D. (2023). Mastering HPC runtime prediction: From observing patterns to a methodological approach. Practice and Experience in Advanced Research Computing 2023: Computing for the Common Good (PEARC '23), 75–85. Association for Computing Machinery. https://doi.org/10.1145/3569951.3593598

[2] Borghesi, A., Di Santi, C., Molan, M., et al. (2023). M 100 ExaData: A data collection campaign on the CINECA's Marconi 100 Tier-0 supercomputer. Scientific Data, 10, 288. https://doi.org/10.1038/s41597-023-02174-3

[3] Antici, F., Bartolini, A., Domke, J., Kiziltan, Z., & Yamamoto, K. (2024). F-DATA: A Fugaku Workload Dataset for Job-centric Predictive Modelling in HPC Systems (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11467483