
Job Grouping Based Intelligent Resource
Prediction Framework

Beste Oztop1[0009−0007−3731−8425], Benjamin Schwaller2[0000−0002−9282−8977],
Vitus J. Leung2[0009−0008−3950−1626], Jim Brandt2[0000−0002−8605−5795], Brian
Kulis1[0000−0002−1704−3838], Manuel Egele1[0000−0001−5038−2682], and Ayse K.

Coskun1[0000−0002−6554−088X]

1 Boston University, Boston MA 02215, USA
{boztop,bkulis,megele,acoskun}@bu.edu

2 Sandia National Laboratories, Albuquerque, NM, USA
{bschwal,vjleung,brandt}@sandia.gov

Abstract. In High-Performance Computing (HPC) systems, users es-
timate the resources they need for job submissions based on their best
knowledge. However, underestimating the required execution time, num-
ber of processors, or memory size can lead to early job terminations. On
the other hand, overestimating resource requests leads to inefficiencies
in job backfilling, wasted compute power, unused memory, and poor job
scheduling, ultimately reducing the overall system efficiency. As we enter
the exascale era, we want to utilize resources more efficiently than ever.
Existing schedulers lack mechanisms that predict the resource require-
ments of batch jobs. To address this challenge, we design a data-driven
recommendation framework that leverages historical job information to
predict three key parameters for batch jobs: the execution time, the max-
imum memory size, and the maximum number of CPU cores required.
In contrast to existing machine learning (ML) based resource prediction
methods, we introduce an online resource suggestion framework that con-
siders both underestimates and overestimates in the batch jobs’ resource
provisioning. Our framework outperforms the baseline method with no
grouping mechanism by achieving over 98% success in eliminating un-
derpredictions and reducing the amount of overpredictions.
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1 Introduction

High-Performance Computing (HPC) systems host and run many scientific ap-
plications from domains like genomics, climate modeling, and computational
physics [21,15,11]. Users of these large-scale systems provide resource requests
through batch job submission scripts. They request the necessary resources for
their applications such as maximum wallclock time, number of processors, and
maximum memory size, based on their best knowledge [19]. This user-based re-
quest for batch job resources often leads to underprediction or overprediction
problems. From the resource utilization perspective, underprediction refers to
requesting less resources than needed, leading to early job terminations, out-of-
memory, and insufficient processor errors. One of the resource utilization logs we
analyze in this work shows that a total of 7.46% of the jobs failed due to out-of-
memory and out-of-time errors. Overprediction of resources, on the other hand,
results in increased job wait times, idle memory and computational resources,
reduced quality of services for users, and overall decreased system efficiency [16].
Thonglek et al. demonstrate the overprediction and waste of resources in the
Google Borg Cluster and reveal that users requested extra number of CPUs and
larger memory size for their jobs over 95% of the time, which leads to these
valuable resources sitting idle [25].

Predicting the resource requirements of batch jobs to avoid these problems
has been an ongoing machine learning (ML) problem in the HPC domain [24,18].
A resource predictor is successful if it accurately estimates the job runtime, the
necessary number of processors, and the memory size for the batch jobs. In
this work, we design a resource recommendation framework that can predict the
resource requirements of batch jobs and give suggestions to the users before the
jobs are run on the HPC system. We present the overview of our framework in
Figure 1.

Fig. 1. The overview of resource recommendation framework.
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In this framework, we group the historical workload logs based on their sub-
mission parameters and train individual ML models for these clusters. We de-
termine the number of clusters for each dataset through our experiments. After
the training, we find the cluster most similar to each testing data point and
make predictions on resource requirements. Finally, we evaluate the framework’s
performance with historical resource utilization datasets. The contributions of
this work are as follows:

– We design a job grouping-based intelligent framework for HPC batch job
resource provisioning to reduce overpredictions and minimize underpredic-
tions.

– We analyze and compare ML models’ resource usage prediction accuracy us-
ing real-world workload manager logs on 5 different HPC systems to develop
the recommendation framework.

– We evaluate how our framework reduces resource waste by minimizing over-
prediction, comparing its effectiveness against baseline methods.

Our work demonstrates the advantages of job grouping and machine learning
for resource prediction in HPC batch jobs. Our recommendation framework can
reduce the early job terminations due to execution time underprediction down
to 0.89%. Additionally, experimental results show a substantial decrease in the
execution time overestimation and unnecessary memory allocation.

Section 2 provides the state-of-the-art resource prediction in the HPC do-
main. In Section 3, we explain the design principles and our motivation for
building the recommendation framework. The details about the datasets we use
in the experimental procedure, the baseline methods, and the performance met-
rics are in Section 4. In Section 5, we compare our framework’s performance with
the baseline methods and evaluate our framework’s success. Finally, we conclude
our paper and give ideas for future work in Section 6.

2 Related Work

Existing workload managers and schedulers like SLURM [3], Altair PBS [1], and
Sun Grid Engine [4] allow users to request resources in a fine-grained manner.
They accept job submissions and queue and schedule the batch jobs based on
their policies. However, they assign resources to the batch jobs based on user
requests and do not provide resource usage predictions or suggestions for batch
job submissions. User-dependent resource requests can result in early job termi-
nations or idle resources due to users’ under- or overprediction. To prevent out-
of-time, out-of-memory, and other resource shortage problems in HPC systems,
accurate prediction of resource requirements has been an ongoing interest in the
cloud and HPC domains. One existing work for cloud systems resource man-
agement scales resources proactively by considering memory and CPU-related
anomalies at runtime [14]. Furthermore, Zhang et al. [27] propose using rein-
forcement learning to predict the resource requirement of microservices. In HPC
systems, on the other hand, previous work on resource prediction for batch jobs
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depends on historical log data from various workload managers. In their recent
work, Menear et al. [18] develop an execution time predictor for batch jobs using
the XGBoost [8] model. Regression models like XGBoost are common choices
in resource prediction based on historical data. However, neural networks can
also solve resource prediction problems since they can capture complex relation-
ships between resource logs and utilization statistics. For example, by analyzing
the Google Cluster Dataset from 2019 [26], Thonglek et al. [25] introduce a
time series prediction model based on Long Short-Term Memory (LSTM) net-
works [13]. This model uses submission and utilization parameters to predict
CPU and memory utilization percentages for Google cluster jobs.

To predict multiple types of resources with a single model, Tanash et al. [24]
propose a regression-based ML model. The maximum memory size and execu-
tion time of jobs running on SLURM-operated systems are the target variables.
They use specific user accounts’ resource usage information to build the model
and try to optimize RMSE and R2 values while reducing the wait time of jobs.
They achieve 86% accuracy in predicting the execution time and memory re-
quirement of jobs at the same time. Despite their high accuracy and low RMSE
values, existing methods do not offer recommendations to users before job sub-
mission.For instance, Tanash et al. [24] achieve high prediction accuracy using
resource usage data as training features. However, since we aim to provide rec-
ommendations before jobs are executed, we cannot rely on resource utilization
information while building our framework.

Furthermore, existing work considers execution time prediction separately
from CPU and memory requirements. For example, one study addresses job
queue time prediction resulting from requesting more wallclock time than nec-
essary [20]. Another study focuses on idle resources and the inefficiencies in the
system due to the overprediction of the number of CPU cores and maximum
memory size [25]. In this work, we build one framework that is able to predict
execution times, the required number of processors, and the maximum memory
size of jobs.

Additionally, as we demonstrate in Section 5 of our work, regression-based
models tend to underpredict execution times and require additional strategies
such as a buffer value to account for underprediction. Contrary to the existing
work, our approach simultaneously tackles underprediction and overprediction
problems by proposing an overprediction-aware buffering mechanism and a rec-
ommendation framework that helps HPC system users optimize their batch job
submissions.

3 Machine Learning Based Resource Prediction

Our main goal with our framework is to accurately predict the execution time,
the number of necessary cores, and the memory size of the jobs before they
are submitted to this system. Figure 2 overviews our offline ML model training
and online testing mechanisms. In this section, we justify some of the important
design choices of our framework.
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Fig. 2. The offline training methodology of our suggestion framework.

3.1 Data Preprocessing and Grouping

The datasets we use in this study contain information on successfully executed
and failed batch job submissions. Since our main goal is to make accurate pre-
dictions, we only use the data related to the submission and resource usage
of the completed jobs in the training stage. Therefore, the first phase of data
preprocessing is to filter out jobs that failed to execute successfully. Then, we
apply label encoding to categorical columns, such as user name/ID, job name,
and other string-like parameters. Note that we exclude job ID if it exists, since
it may have repeating values and provide inaccurate job resource utilization
similarities.

In the job grouping stage, we use the features from the workload managers
that are available before the job execution starts. Some of the features we use
include the user’s name, job name, job ID, account name, resource requests (e.g.,
the number of processors, maximum memory size), and wallclock limits (i.e.,
maximum allowed runtime the user sets). For batch job information grouping
across datasets, we apply K-means clustering from the scikit-learn library [22].
We determine the optimal number of clusters for each experimental dataset
using the elbow method. To apply the elbow method, we calculate the Within-
Cluster Sum of Squares (WCSS) score for varying numbers of clusters (k) with
the following formula:

WCSS =

K∑
k=1

∑
i∈Ck

∥xi − µk∥2, (1)

where:

– K is the total number of clusters,
– Ck is the set of all data points in the k-th cluster,
– xi is a single data point that belongs to the cluster Ck,
– µk is the centroid of the k-th cluster,
– ∥xi − µk∥2 is the squared Euclidean distance between the data point xi and

the centroid µk.

The WCSS score shows the distances of data points from the centroids of their
respective clusters. A smaller WCSS indicates that the data points are closer to
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their centroids and clusters contain more similar batch job information. After
calculating the WCSS values, we observe the elbow point for each dataset and
determine the optimal number of clusters. We show the elbow method results in
Section 5.1.

3.2 Machine Learning Model Selection and Training

This section explains our recommendation framework’s offline model training
stage design choices. The framework provides continuous numerical predictions
on resource usage and execution time. We use XGBoost and Random Forest
linear regression models for model training since they offer low computational
overhead and high accuracy in predicting resource utilization for HPC appli-
cations [18]. Their design allows us to make continuous predictions based on
selected input features. The training features are submission features, and we do
not include resource usage information in the model training feature set.

LSTM and other neural network models also offer advantages and high pre-
diction accuracy in time-series prediction problems. Thonglek et al. propose an
LSTM-based resource predictor that consistently predicts values lower than the
user’s requests while avoiding underestimating CPU and memory utilization [25].
However, in this approach, the input features for the LSTM model include CPU
and memory utilization. Since we focus on a recommendation framework that
can provide accurate estimations on resource requirements of jobs before they
run on a given HPC system, we cannot rely on or use resource usage features
that are unavailable before job execution. Therefore, in this work, we implement
and compare different regression models’ performance and show their efficiency
in resource prediction while leaving the implementation of neural networks for
future work.

To build our recommendation system, we use an offline training principle for
the prediction models we use for resource provisioning. After the data prepro-
cessing stage, we split the data into training and testing datasets. While using
the XGBoost model, we note that there might be negative predictions since
the original model with default parameters does not force the predictions to be
positive. Since the target variables we want to predict are resource utilization
values, we apply an additional logarithmic transform before training the model
to prevent any negative execution time and resource utilization predictions. Fur-
thermore, we experiment with different time windows and train durations, and
the results of our experiments for training and testing data splits are in Section
5.2. The ML models we train with historical logs from workload managers build
the recommendation framework’s offline training stage.

3.3 Handling Underpredictions

One of our primary goals with this work is to prevent batch jobs from termi-
nating prematurely. Regression models require addressing the underprediction
of the requested wallclock time, number of processors, and memory allocated to
each job. In our approach, we separate similar jobs into groups based on their
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submission parameters in the training dataset and create separate models for
each group. However, our models tend to estimate lower resource usage than
the actual values when applied to new jobs in the test dataset. We analyze this
underprediction problem in detail through our experiments in Section 5. To mit-
igate the underprediction issue in resource prediction, we develop two strategies
in this section.

The first solution we offer is to add an offset to the ML model predictions. In
their recent work, Dai et al. [10] scale the execution time predictions by a prede-
fined value. In contrast, Cui et al. [9] add an offset value based on the training
dataset characteristics. Since we aim to limit overpredictions while mitigating
the underpredictions, choosing an offset that reduces the underpredictions with-
out increasing the overpredictions by a great amount is important. As a result,
we decide to use the double standard deviation of underpredictions within each
cluster as our buffer value. First, we separate a validation set within each train-
ing cluster. Then, we train individual models with the training dataset and test
these models on the validation set to calculate the buffer value. An illustration
of our buffer calculation is in Figure 3. At the test stage, we observe the effec-
tiveness of our framework by shifting the predictions in the test dataset with the
buffer value. We use the following formula for the 2σ calculation.

2σ = 2

√√√√ 1

n

n∑
i=1

(xi − µ)
2
, (2)

where:

– n is the number of job information within the cluster validation set,
– xi is the resource usage of job i,
– µ is the mean resource usage within the cluster validation set.

During the experimental procedure, we observe that the clusters formed in
each training dataset do not clearly separate jobs based on resource utilization.
This is expected, as we do not consider the resource usage information while
forming the clusters. If the amount of batch jobs with high resource usage or
execution time is low for a dataset, the clusters we create do not represent these
jobs well. In other words, the number of long-running jobs with high CPU or

Fig. 3. This is an illustrative figure for buffer value calculation per cluster. Each data
point represents different batch job information.
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Fig. 4. This is a representative figure that presents the resampling method. Each data
point represents different batch job information.

memory resource usage in the clusters can be substantially smaller than the
number of short-running jobs with smaller resource needs.

To alter this nonuniform distribution in the training datasets and possibly
overcome the underprediction problem, we introduce a second strategy to resam-
ple less frequent batch jobs in the training clusters. For each cluster, we determine
the minimum and maximum resource usage values for CPU and memory utiliza-
tion, and the execution time. Based on these values, we create equally spaced
bins and group the jobs in a sense. Then, we find the bin with the maximum
number of samples and resample the other bins to reach this maximum value.
We aim to have representative job information in the training dataset and ensure
that they sufficiently reflect the diversity of resource usage within the cluster.
We visualize this approach in Figure 4.

In our experimental procedure, we investigate the results of the execution
time, maximum memory size, and maximum number of processor predictions of
batch jobs with and without these two different strategies. We refer to the buffer
value as 2σ and indicate the resampling method whenever applicable.

4 Experimental Methodology

This section explains the datasets and features we use for ML model training,
the baseline methods we compare our method with, and the performance metrics
we choose to test the effectiveness of our recommendation framework.

4.1 Datasets

We evaluate our approach using real system workload manager outputs from
different schedulers, such as SLURM and Sun Grid Engine. In this subsection,
we describe the datasets we use in our study. These datasets include information
on both successfully executed jobs and failed jobs, and possibly along with the
failure reasons. In this work, we use only the successful job data in model training
to predict the target resources as accurately as possible. Table 1 summarizes the
features used to train each dataset’s ML models.
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Sandia Dataset We analyze and make resource predictions on a resource utiliza-
tion dataset from Sandia National Laboratories. The dataset duration is from
May to October 2024. There are 313,615 completed jobs from 614 different users,
and the execution time, mean, and maximum CPU and memory utilization of
jobs are available.

NREL Eagle Dataset The National Renewable Energy Laboratory (NREL) pro-
vides publicly available data on resource requests and utilization for over 11
million jobs executed on the Eagle supercomputer [12]. Eagle served as NREL’s
primary HPC system from 2018 to 2024, hosting 2,000 nodes and providing a
total computing capacity of 8 petaflops per second [2]. The dataset includes
job information from November 2018 to February 2023, collected by SLURM,
and submitted by 936 users, with user and project account names included. This
work contains successful jobs (67% of the total jobs). Note that 7.28% of the jobs
failed due to timeout, supporting our motivation for execution time prediction.

M100 CINECA Dataset Borghesi et al. [6] provide a 31-month-long resource
utilization data using a SLURM plugin from Marconi-100 (M100) supercomputer
located at the CINECA datacenter. M100 supercomputer hosts 347,776 cores
and provides up to 21.64 petaflops per second [23]. The dataset is organized in
months [7] and we test our approach by using a subset of it from December 2021
providing 79,173 successful jobs from 402 users. The failed jobs we exclude from
this work have 6.63% timeout errors and 1.23% out-of-memory errors.

Fugaku Dataset Fugaku supercomputer, located at the RIKEN Center for Com-
putational Science (R-CCS) in Kobe, Japan, ranked as the sixth supercomputer
system to reach exascale computing in 2024 [23]. Fugaku comprises 7,630,848
cores and provides a total computing capacity of 442.01 petaflops per second. A
three-year resource utilization dataset (March 2021- April 2024) from Fugaku is
publicly available [5]. In our work, we utilize a subset of this dataset containing
338,796 completed jobs, submitted by 483 users in April 2024.

Boston University Shared Computing Cluster (BU SCC) Dataset The BU Shared
Computing Cluster (SCC) is a Linux-based system with over 28,000 CPU cores,
400 GPU nodes, and 14 petabytes of research data storage. Boston University’s
Research Computing Services (RCS) manages the cluster and the workload man-
ager is the Sun Grid Engine (SGE). SGE stores the historical job submissions
and resource usage data, known as "accounting information". We utilize the
accounting data from 2023 in this work which contains 11,831,831 successful
jobs.

4.2 Baseline Methods

One of the fundamental baselines for resource prediction and allocation in HPC
systems we consider is the user-requested values. In the datasets we use, as Ta-
ble 1 summarizes, we have access to the execution time, peak memory, and CPU
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Table 1. Selected Training Features, Present at Submission Time

Feature Name Sandia Eagle M100 Fugaku BU SCC
User Name/ID ✓ ✓ ✓ ✓ ✓
Job Name ✓ ✓ ✓ ✓
Project Account Name/ID ✓ ✓ ✓
Partition ✓ ✓
Priority ✓
Working Directory ✓
Requested Wallclock Time ✓ ✓ ✓ ✓
Requested Memory Size ✓ ✓
Requested Processors ✓ ✓ ✓
Requested Number of Nodes ✓ ✓
Requested GPUs ✓
Requested Frequency ✓

request information except for the Sandia Dataset. For the remaining datasets,
the first baseline for comparison and improvement is the resource requests by
users at the time of submission, which we refer to as User Requested. Addi-
tionally, we compare our framework’s results with the method Menear et al. [18]
propose, where the authors use an XGBoost model to predict the execution
time of jobs. The model characteristics and hyperparameters are publicly avail-
able [17]. We refer to this second baseline as Single XGB.

4.3 Performance Metrics

Selecting metrics that suit our goals is crucial for a more effective comparison and
better interpretability. In this work, we measure the framework’s success based
on two main objectives: preventing underpredictions and reducing the amount
of overpredictions. Classical error metrics, such as Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE), do not reflect the underpredictions
or the amount of overpredictions. These metrics compare each prediction point
only with the true values and report the statistical error. To gain more insights
into our results, we need to use alternative metrics to better assess the success
of our framework in terms of under- and overpredictions.

For our framework’s first objective, we report the ratio of jobs with under-
predictions to the total number of jobs, as Dai et al. [10] suggest. Ideally, this
ratio should equal 0 where none of the jobs experience early job terminations.
We define this metric as the Underprediction Ratio (UR) and calculate it
using the following formula:

Underprediction Ratio (UR) = 100× Number of Jobs with Underprediction
Total Number of Jobs

(3)
While this metric shows how many jobs can execute successfully using our

framework, it does not reflect the amount of underpredictions. We include the



Job Grouping Based Intelligent Resource Prediction Framework 11

MAE distribution and median error of resource predictions for different datasets
to support the UR results in Section 5. Our motivation is to quantify the predic-
tion errors since an underprediction of 1 hour is more significant than 1 minute
of underprediction.

Our second goal, reducing overpredictions, requires observing the user-requested
values, actual resource usage, and the predictions our framework makes. Ide-
ally, our framework’s predictions should not be much larger than the actual
values, especially compared to the user-requested values. While we report the
total amount of overprediction for different resource types in the experimental
procedure, we want to observe the changes in resource request distribution with-
out using aggregated values. Consequently, we use the following formula for the
overestimation factor that Menear et al. [18] introduces.

Overestimation Factor (OF) =
Requested Resource of Predicted Utilization

Actual Resource Utilization
(4)

For example, consider a user who requests 32 CPU cores for two jobs. One
job requires only 2 cores, resulting in an OF of 16; the other requires 8 cores,
giving an OF of 4. If our framework predicts the number of processors as 4 and
16 cores for these jobs, the OF becomes 2 in both cases. However, there is more
improvement in predictions for the first job, where the OF drops from 16 to
2. Therefore, observing the OF distribution for the test dataset user-requested
values and predictions shows our framework’s success. We calculate this met-
ric for both users’ resource requests and ML model predictions for maximum
memory size and number of processor predictions. Then we visualize the results
using density plots in the next section to evaluate how effectively our framework
reduces overpredictions.

5 Results and Discussion

In this section, the goal is to show our framework’s success as a recommendation
system. Through our experiments, we find the optimal number of clusters for
job grouping and choose the optimal window size for model training. We present
the results of our framework’s predictions on execution time, maximum memory
size, and number of processors for different datasets by comparing them with
the baseline methods. Note that we represent the method we offer without any
underprediction prevention mechanism as "Clustering", use "XGB" and "RF" as
abbreviated versions of the XGBoost and Random Forest models, and indicate
the buffer and resampling methods as 2σ and "Resampling".

5.1 Finding Optimal Number of Clusters

As we explain in section 3.2, we calculate and plot the WCSS scores for varying
numbers of clusters for each experimental dataset. We select the elbow point
from the WCSS plots in Figure 5 and determine each dataset’s optimal number
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Fig. 5. The WCSS value per cluster

of clusters. At this stage, for Fugaku and M100 datasets, increasing the number
of clusters further than 4 and 6 may result in empty data frames. This indicates
that the natural grouping for these smaller datasets, compared to Sandia, Eagle,
and BU SCC, should have fewer clusters. Also note that the K-Means algorithm
selects the initial centroids randomly, and we initialize the same centroids in
repeating experiments by using the same random state.

As a result, we choose 18 for the Sandia, Eagle, and BU SCC datasets, 4
for the Fugaku dataset, and 6 for the M100 CINECA dataset as the number of
clusters in the experimental procedure.

5.2 Evaluating the Effect of Window Size on Underpredictions

The experimental datasets in this work contain batch jobs logs from a wide range
of durations, from 1 month to almost 5 years. The train and test time split for
these datasets significantly changes the predictions and the framework’s success.
To decide on an optimal train and test data split, we conduct execution time
prediction experiments with varying training windows. The window size is the
duration of a subset we train and test our models with. The update interval refers
to the amount of time shift we apply for each window to cover all data points.
For each window, we use the last 20% of batch jobs for testing. We separate 40%
of the training data as the validation set to calculate the buffer values. For each
dataset, we use the update interval and window size pairs in Table 2 where the
units are the number of days.

Table 2. Window Size and Update Interval Pairs for Train-Test Split Experiment

Parameters Sandia Eagle M100 Fugaku BU SCC
Window Size 7, 14, 30 7, 14, 30, 60, 90 3, 7, 14 3, 7, 14 7, 14, 30, 60, 90
Update Interval 7, 7, 30 7, 7, 30, 30, 30 3, 7, 7 3, 7, 7 7, 14, 30, 30, 30

We determine the optimal window size by analyzing the UR, along with
the mean and standard deviation of underprediction amounts across different
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Fig. 6. Window size experiment results for Sandia Dataset execution time prediction.

window sizes for each dataset. Note that the underprediction amount is the
total difference between actual and predicted execution times. We create bar
plots for separate datasets’ window size experiment results. We include all of the
models we test and the underprediction prevention mechanisms in these plots.
For example, we present the Sandia dataset execution time prediction results in
Figure 6. We observe that the standard deviation and the mean underprediction
amount of models with buffer addition are larger than the no buffer cases. This
results from the decrease in the number of underpredicted test data points with
the buffer addition.

As a result of this experiment, we determine the optimal window size and
update interval pairs as follows: [7,7] days for the Sandia, [30,30] days for Eagle,
[3,3] days for M100 and Fugaku, and [60,30] days for the BU SCC datasets. We
generally observe that looking at a smaller window for execution time prediction
gives better performance. The next sections provide more insight into the results
for these best-performing window size values.

5.3 Execution Time Prediction

In this section, we compare the results of our framework on execution time pre-
diction with the baseline methods using various performance metrics. We treat
execution time prediction as a regression problem and test two strategies we
develop to mitigate the underprediction issue. We shift the windows for each
dataset’s optimal window size to cover the entire duration. Therefore, the un-
derprediction ratios in Table 3 show the results from the full datasets using our
training strategy.

The execution time prediction experiment outcomes prove that clustering
similar jobs before model training can improve the UR value up to 12.08% in the
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BU SCC dataset. The baseline method underpredicts more than the Clustering-
RF model for all datasets. However, to provide better recommendations to users,
our framework should have UR values close to zero in the practical case. There-
fore, we consult the underprediction handling strategies we introduce in Section
3.4. The resampling strategy provides improvement up to 9.39% in the Sandia
dataset, when the offline training model is Random Forest. Across datasets, we
observe the smallest UR values resulting from adding a buffer value of 2σ to the
baseline model.

Table 3. Execution Time Prediction Experiment Underprediction Ratio Results.

Method Sandia Eagle M100 Fugaku BU SCC
Single-XGB 48.59% 50.16% 48.59% 46.91% 49.87%
Clustering-XGB 48.45% 49.31% 49.90% 45.78% 49.58%
Clustering-RF 38.22% 40.89% 46.31% 40.71% 37.79%
Resampling-XGB 46.65% 42.35% 48.21% 40.73% 47.07%
Resampling-RF 39.20% 37.66% 45.68% 38.58% 37.04%
Single-XGB + 2σ 2.01% 1.37% 2.10% 1.89% 0.88%
Clustering-XGB + 2σ 2.28% 3.80% 2.24% 2.61% 1.24%
Clustering-RF + 2σ 1.77% 2.86% 2.19% 2.29% 0.89%
Resampling-XGB + 2σ 8.52% 4.70% 5.17% 3.60% 2.06%
Resampling-RF + 2σ 7.39% 4.65% 4.75% 3.57% 1.82%

Figure 7 provides an MAE density plot for the Eagle dataset to analyze
the prediction errors in execution time further. Although the baseline method
with a buffer value performs the best in terms of UR, we observe that the re-
sampling strategy improves the MAE distribution and reduces the median error
in execution time compared to the Single-XGB and Clustering-XGB methods.
This motivates users to select the clustering and resampling strategy instead of
training a single model to reduce the MAE for different job durations.

Fig. 7. Mean absolute error distribution in execution time prediction for Eagle Dataset.
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Fig. 8. Framework execution time predictions comparison with the user requests for
Eagle Dataset.

For our second objective, reducing the overestimation of execution time, we
need to observe the predictions with a buffer value addition. As the first step,
we visualize the user requests of execution time and the Resampling-RF method
with buffer value addition predictions in Figure 8. Through this analysis, we
observe that our framework can predict smaller execution time regions than the
user requests, for ranges of actual execution time of jobs. In the practical case,
this can result in shorter job waiting times since the wallclock time request and
waiting time are positively correlated, as Figure 8 shows. Hence, reducing the
wallclock time requests can improve the mean waiting time and increase the
quality of service for HPC system users.

In figure 9 we provide the total amount of overestimation compared to the
user requests. This figure illustrates the advantages of using a machine learning
model to predict the execution time of jobs without relying on the user’s manual
selections. Our framework reduces the overestimation in total execution time

Fig. 9. Total amount of execution time overprediction comparison for user requested
values with machine learning model predictions.
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by applying regression models for all datasets. The clustering method with 2σ
buffer and resampling strategies gives the biggest improvement in the execution
time overpredictions, which reaches a 13.60 times reduction for the M100 dataset
with the Resampled RF model. We also note that the differences between XGB
and RF models are very subtle with a buffer value addition for the execution
time prediction, both in terms of UR values and the overprediction results.

In light of the execution time experiments for varying workload manager
outputs, we conclude that resampling the less frequent batch job information in
the machine learning model training stage and applying a buffer value to the
predictions can reduce the number of underpredictions below 2% of total jobs
while keeping the overpredictions under control.

5.4 Predicting Resource Requirements of Batch Jobs

To provide a recommendation framework to the user by predicting the resource
utilization of jobs along with their execution time, we also address the prediction
of other resources. The first resource type we predict is the maximum memory
size requirement of a given batch job. In the Fugaku dataset, we have access
to the requested maximum memory size and the utilization values while the
Sandia dataset does not provide user requests. Therefore, we perform resource
prediction experiments on both datasets and illustrate the improvement in users’
resource selection only with the Fugaku dataset.

Our job grouping-based framework achieves a 2.48% underprediction ratio
for the maximum memory size prediction in the Sandia dataset, outperforming
the baseline, which underpredicts the memory resources for 48.31% of total test
jobs. The reduction in underprediction ratio is down to 3.04% in the Fugaku
dataset. Table 4 presents our results of underprediction prevention mechanisms
along with the plain baseline and clustering models.

Table 4. Maximum Utilized Memory Size Prediction Experiment Underprediction
Ratio Results.

Method Sandia Fugaku
Single-XGB 48.31% 49.87%
Clustering-XGB 48.45% 47.58%
Clustering-RF 37.32% 46.10%
Resampling-XGB 46.87% 46.38%
Resampling-RF 37.94% 45.20%
Single-XGB + 2σ 2.48% 3.04%
Clustering-XGB + 2σ 3.22% 5.48%
Clustering-RF + 2σ 2.59% 5.50%
Resampling-XGB + 2σ 12.22% 6.72%
Resampling-RF + 2σ 9.74% 6.70%

Moreover, in Figure 10, we observe the amount of user-dependent memory
size requests compared to our framework predictions. Fugaku system users with-
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Fig. 10. Overestimation factor density plots for maximum memory size and the number
of processors prediction in the Fugaku dataset.

out the aid of a prediction framework overestimate the maximum memory size
of their jobs by 1010 with a density centering around 0.4. This system contains
jobs with thousands of nodes allocated to them; hence, the maximum memory
size requests reach up to 1012 bytes. Although we add the 2σ buffer value to our
predictions, the framework reduces the overestimation factor to the 100 − 102

range with this bias type. This result shows the effectiveness of our framework
and its usability in a real HPC system where users tend to request more memory
resources for batch job submissions than they need.

To support the use case of applying the framework for other resource types,
we also conduct experiments on the number of core utilization of batch jobs in the
Sandia and Fugaku datasets. Similar to the maximum memory size, the Fugaku
dataset provides resource request and utilization information on the number of
cores. Testing the success of our framework in terms of the number of processor
predictions supports our claim of using this methodology as a recommendation
system. For the execution time and memory size, we use regression models and
directly predict continuous values. However, since the number of cores can only
take integer values, we round the predictions of the regression models to the
closest larger integer value for this prediction problem.

With the same methodology, we achieve an underprediction ratio of 11.05%
in the Fugaku dataset using only the Clustering-RF method without adding the
2σ buffer and outperform the baseline method that underpredicts the number of
cores for 25.78% of the jobs in the test dataset. In the Sandia dataset predictions,
adding the buffer value results in UR ratio reduction down to 3.79% with the
baseline method as visible in Table 5.

However, a tradeoff exists between preventing the underestimations of a given
resource type and limiting the amount of overestimation. This phenomenon is
visible from the number of processor prediction results in Figure 10. Observing
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Table 5. Maximum Number of Core Usage Prediction Experiment Underprediction
Ratio Results.

Method Sandia Fugaku
Single-XGB 37.42% 25.78%
Clustering-XGB 28.75% 16.57%
Clustering-RF 23.81% 11.05%
Resampling-XGB 31.88% 19.90%
Resampling-RF 22.45% 12.99%
Single-XGB + 2σ 3.79% 0.27%
Clustering-XGB + 2σ 4.74% 1.39%
Clustering-RF + 2σ 4.09% 1.29%
Resampling-XGB + 2σ 14.35% 2.03%
Resampling-RF + 2σ 10.32% 2.41%

the user-requested number of cores and the machine learning model predictions
with buffer values shows us that models overpredict the number of cores more
than the users. Unlike the maximum memory size prediction, users tend to re-
quest fewer resources compared to our framework, which shows us the variance
in user requests. While the manual selection of resources gives satisfying re-
sults for the number of core requests per batch jobs, the maximum memory size
prediction needs the help of our framework.

6 Conclusion and Future Work

This paper proposes an intelligent, job grouping-based resource recommenda-
tion framework for HPC system users. Users can select the resource type for
the framework to predict and the underprediction prevention mechanisms they
choose to use.

Using this framework, we reduce the underprediction of execution time, mem-
ory, and CPU resources to less than 2% and outperform the baseline method.
The framework also reduces the amount of overestimation in batch job resources
and possibly will decrease the user waiting time. The historical workload man-
ager logs we include in this work are real system datasets, and we observe that
waiting time is correlated with the users’ resource requests. Therefore, HPC users
can benefit from this recommendation system by predicting their jobs’ resource
requirements before submitting them to the workload manager, using historical
resource utilization datasets of their own.

As future work, we aim to use a real workload manager simulator or a real
production system supercomputer to show our framework’s success in reducing
the early terminations of jobs, longer queue times, and waste of valuable com-
puting and memory resources. To extend this work, we plan to investigate the
same batch jobs’ resource utilization variations and their relationship with the
resource contention in the system.
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