
1

Steady-State Temperature Prediction Based on
Compact Thermal Models Using Machine Learning

Mohammadamin Hajikhodaverdian∗, Sherief Reda†, Ayse K. Coskun∗
∗ Boston University - (aminhaji, acoskun)@bu.edu

† Brown University - sherief reda@brown.edu

Abstract—With the scaling up of transistor densities, the
thermal management of integrated circuits (IC) in 3D designs
is becoming challenging. Conventional simulation methods, such
as finite element methods, are accurate but computationally
expensive. Compact thermal models (CTMs) provide an effective
alternative and produce accurate thermal simulations using nu-
merical solvers. Recent work has also designed machine learning
(ML) models for predicting thermal maps. However, most of these
ML models are limited by the need for a large dataset to train
and a long training time for large chip designs.

To overcome these challenges, we present a novel ML frame-
work that integrates with CTMs to accelerate thermal simulations
without the need for large datasets. We introduce a methodology
that effectively combines the accuracy of CTMs with the effi-
ciency of ML using a physically informed linear regression model
based on the thermal conduction equation. We further introduce
a window-based model reduction technique for scalability across
a range of grid sizes and system architectures by reducing com-
putational overhead without sacrificing accuracy. Unlike most of
the existing ML methods for temperature prediction, our model
adapts to changes in floorplans and architectures with minimum
retraining. Experimental results show that our method achieves
up to 70× speedup over the state-of-the-art thermal simulators
and enables real-time, high-resolution thermal simulations on
different IC designs from 2D to 3D. 1

Index Terms—Thermal simulation, Compact thermal models
(CTM), Machine learning, 3D IC

I. INTRODUCTION

The increasing transistor densities in chips lead to higher
power and heat densities, which can degrade chip perfor-
mance and negatively impact the reliability and lifespan of
semiconductor devices [1]–[3]. To overcome the limitations
of 2D scaling in width and length, 3D design architectures
have emerged through modular architectures with multiple
stacks that deliver high performance, increased bandwidth, and
reduced area costs. However, these advantages come at the cost
of notably increased heat densities due to several active silicon
layers on top of each other, further increasing the thermal han-
dling issue that already arises with higher transistor densities
[4]. Therefore, thermal analysis during chip design becomes
a necessary and unavoidable task. Conventional methods for
creating a thermal map of a chip require solving the heat
conduction equations using finite element methods (FEM) [5],
which are utilized in commercial software, such as COMSOL
and ANSYS. These approaches necessitate considerable com-
putational time and memory resources. In order to mitigate the

1This research was partially funded by the NSF CCF 2131127 grant

computational time and memory constraints associated with
FEM-based techniques, researchers have developed compact
thermal models (CTMs) that facilitate accelerated thermal
simulation while maintaining promising levels of accuracy
[6]–[8]. CTMs simplify the thermal problem by constructing
lumped thermal resistance and capacitance networks. CTMs
are widely used for temperature simulation and even ex-
tended to account for advanced cooling methods, e.g., micro-
channels, heat sinks, and hybrid cooling [9], [10]. However,
for temperature simulation of a specific design, the user has
different workflows and power maps that must run CTMs
a few hundred or even thousands of times. For each new
power map, the numerical solver of the CTMs needs to run
several iterations to converge, resulting in a long simulation
time. Recent successes in machine learning (ML)-based meth-
ods promise accurate temperature predictions. Various works
have investigated ML-based approaches for predicting on-chip
temperature distribution [11]–[13]. Unfortunately, most such
techniques require large datasets for effective execution and
are computationally intensive during training. They often need
retraining as new architectural designs need to be simulated.
Moreover, some of these models rely on supportive inputs
from temperature information derived through infrared (IR)
sensors [14] or simulations [15], which is expensive and
impractical for widespread application.

This work, which extends our preliminary work [16],
presents a new ML method based on CTMs that can train the
model with a few samples, reduce the training time for each
design, and bypass the CTMs when they reach a reasonable
accuracy. Most of the prior works using ML models did
not consider the physics of the problem, and they designed
complicated models for steady-state simulation, which is a
linear problem solved in CTMs. To the best of our knowledge,
this is the first work introducing a framework that can speed
up a CTM simulation time by utilizing a fast and reliable ML
model. Our contributions are summarized below:

• High-resolution thermal modeling using ML needs many
training samples for reasonably accurate temperature pre-
diction. We address this problem by reducing needed
training samples to only a few (less than 10 for grid sizes
of 64×64 and 128×128) while achieving high accuracy,
using a model that considers the physics of the problem.

• We design a low-latency framework that is needed in
architecture optimization and design, where temperature
simulations are often performed on complex 3D inte-



2

grated circuit (IC) geometries and designs with multiple
variations in their floorplans.

• We introduce a model reduction approach based on a
windowing methodology, enhancing scalability for a wide
range of grid dimensions and system architectures, hence
offering an effective solution to the computational prob-
lems connected with high-resolution thermal simulations.

As part of our evaluation, we compared our implemented
method against an existing compact thermal simulator (CTS)
and demonstrated a significant speedup of more than 70× for
complicated designs. This result highlights the potential for
fast, real-time thermal simulations while maintaining accuracy,
showcasing the practical benefits of our approach. The subse-
quent sections of this paper are organized as follows: Section
II reviews the related literature. Section III details our designed
methods and presents a performance evaluation of it in Section
IV. Finally, our conclusion is drawn in Section V.

II. RELATED WORK

Challenges existing in CTMs and conventional FEM-based
approaches have been addressed by the emergence of several
ML-based methods as a promising alternative for thermal sim-
ulation. The ML-based thermal analysis runs faster compared
with traditional numerical solvers while still maintaining high
accuracy. There are examples leveraging ML models training
on IR camera measurements of physical chips [14], [17].
While such methods have offered highly accurate temperature
prediction, their wider adoption within the research community
is restricted due to the high expense of IR camera equipment.
Moreover, they can only apply to post-silicon designs.

On the other hand, several recent works have developed
simulation-based methods using ML models such as graph
neural networks and CNN-based encoder-decoder architec-
tures [18]–[21] that avoid the use of costly IR camera se-
tups. These techniques provide accurate and efficient thermal
predictions during the pre-silicon design stages. Thus, they
are more feasible for a wide range of applications. However,
they rely on complex ML models to predict temperature,
even though steady-state temperature prediction (with uniform
material properties) can often be modeled by a linear equation,
as in the case of this paper. For more general temperature
modeling (transient, nonuniform materials, etc.), nonlinear
effects need to be considered. These models need large
datasets to train all the parameters, increasing the training time
and slowing down the temperature modeling. The extensive
data required for training are usually generated through time-
consuming and computationally expensive operations, such as
the thousands of runs of CTMs or FEM-based simulations.
Another disadvantage is that significant changes in the design
floorplan require retraining, further exacerbating the data col-
lection problem.

For instance, Ranade et al. [19] had to train different models
for various use cases, where each model required thousands of
samples; Chhabria et al. [21] utilized a convolutional neural
network with downsampling and upsampling, which required
the retraining of the model with thousands of samples for every
new case. Wen et al. [20] predicted temperature differences

Numerical
Solver

Prediction

Config Files

Compact Thermal
Simulator

Floorplan

Power trace

Only for Training

Linear Regression

Fig. 1: Framework of our method: Trained on power trace
data and corresponding temperature maps from the compact
thermal simulator, the ML model then forecasts temperatures
directly, eliminating the need for additional simulation.

and afterward used coarse-grain FEM simulations to compute
the final temperature maps.

Unlike previous methods, which require large datasets and
retraining whenever applications change, or new floorplan
designs are devised, our method implicitly embeds the physical
laws driving the thermal characteristics. As such, it allows for
more robust generalization with minimal retraining if changes
in the design are made. Unlike some of the previous works that
rely on additional coarse-grain FEM simulations after predic-
tion, our method will avoid the necessity of extra simulation by
directly providing accurate temperature predictions. Moreover,
our window-based model drastically decreases the number of
training parameters, reducing computational requirements and
allowing it to run on low-performance hardware. The window-
based model can also increase the scalability of our design,
which previous works did not consider fine-grain simulations.
This broadly applicable, operationally efficient integration with
minimum data requirements improves the prior work and
effectively solves the challenges related to extensive data
preparation, retraining, and higher computation costs.

III. PREDICTING STEADY-STATE TEMPERATURE: A
CTM-BASED MACHINE LEARNING APPROACH

In this work, we design a method to accelerate the process
of compact thermal simulations using an ML model. Our
approach addresses the computational limitations of traditional
thermal solvers and offers a scalable and efficient alternative
that aligns with the physics of thermal conduction in IC
designs. First, we summarize key physical aspects in CTM that
guided us in choosing our model, followed by a discussion of
our CTM-based design. Finally, we describe the window-based
model that we use.

A. Compact Thermal Model

The CTM approach creates thermal circuits based on the du-
ality between thermal and electric fields, allowing reasonably
accurate temperature predictions [6], [8]. To model a chiplet-
based system, CTM divides each layer into cuboid grids.
Based on these grids, equivalent thermal resistance networks



3

are constructed. Each grid cell is represented as a node, and
nodes are connected to their neighboring cells. The linear
matrix equation then describes the system:

GT = P (1)

where T is the vector of node temperatures (K), G is the
conductance matrix (W/K), and P represents the power
consumption at each node (W ). Compact thermal simulators
(CTS) apply CTM for temperature predictions and they mainly
use numerical solvers to solve linear equations in Eq. (1). For a
chiplet, the matrix G is high-dimensional and these numerical
solvers are inefficient and time-consuming in those cases.

B. Model Design

Our introduced approach combines an ML model with a
CTS to speed up the temperature prediction in the IC designs.
Instead of solving the linear systems in Eq. (1) for any new
P using a numerical solver as conventional CTS do, we
design a method to estimate G−1 using ML models; since
T = G−1P , by having G−1, computing temperature for any
arbitrarily P would become straightforward. Although com-
puting temperature is straightforward once G−1 is available,
explicitly inverting G can be expensive for large-scale grids
(e.g., 256 × 256 or 3D designs). This is because the matrix
size grows quadratically with increasing the resolution, making
explicit calculation time-consuming and memory intensive. In
contrast, our ML-based approach also involves an upfront cost
but is far more flexible when the floorplan changes frequently.
Rather than recomputing the full matrix inversion for each new
layout, our method only needs a partial update of the learned
model, significantly reducing overhead.

Since the nature of thermal conduction in steady-state CTMs
and the Eq. (1) are linear, we select linear regression as our
base ML model to estimate the inverse thermal conductance
matrix. Not only linear regression aligns with the physics of
the problem, but it is also a simple and fast model to train.
Unlike previous work, we demonstrate that our model is a
lightweight model compared to other complicated models. Our
model requires no more than a few samples to achieve high
accuracy (less than 10 samples for grid sizes of 64× 64 and
128 × 128). Although a 64 × 64 grid causes thousands of
parameters to be trained, most of these values in the matrix G
are zero. This makes it simple for the linear regression model
to learn important values faster with less data. In addition,
since the conduction matrix is considered uniform based on
the uniform material properties we considered in this paper,
the heat conduction follows a linear pattern, which simplifies
the learning process of our model.

In our workflow, shown in Fig.1, the input data is repre-
sented by configuration files (defining grid size, simulation
time, etc), floorplans, and power traces. Our approach is
separated into a training phase and an inference phase. In the
training phase, we use CTS to solve the thermal conduction
equation (Eq. (1)) using a numerical solver to obtain an
accurate temperature map. The training samples are selected
randomly since the critical information (G matrix) we need
from these power maps is identical if the samples are from

Algorithm 1 Window-based Linear Regression for Tempera-
ture Prediction

1: Input: Power matrix P of size N×N , Temperature matrix
T , Window size w, Stride s

2: Output: Predicted temperature matrix Tpred

3: Initialize Tpred acc ← 0 of size N ×N
4: Initialize Count← 0 of size N ×N
5: for i = 0 to N − w with step size s do
6: for j = 0 to N − w with step size s do
7: Power window ← P [i : i+ w, j : j + w]
8: Temp window ← T [i : i+ w, j : j + w]
9: Temp pred← Linear-Regression(Power window)

10: Tpred acc[i : i+w, j : j+w]← Tpred acc[i : i+w, j :
j + w] + Temp pred

11: Count[i : i + w, j : j + w] ← Count[i : i + w, j :
j + w] + 1

12: end for
13: end for
14: Average nodes with several prediction:Tpred ← Tpred acc

Count
15: Return: Tpred

the same architecture. We feed training power maps to the
ML model and predict the temperature. Model parameters in
this method will be updated by considering the whole grid
size resolution. To switch to our inference phase, we set a
training threshold based on either our error metrics (e.g., mean
square error (MSE)) or when the model converges to a specific
error, meaning it has learned adequately the relation between
power and temperature, to stop using CTS. After achieving
this threshold, the model is allowed to bypass the numerical
solver within the CTS framework and generate temperature
predictions using the ML model, hence drastically accelerating
the process of the simulation. The main advantage of the ML
model is the capability to predict temperatures quickly and
without deep numerical simulations within CTS performed by
the numerical solver.

C. Window-based Linear Regression

While the linear regression approach is straightforward,
using a large grid (e.g., 256× 256 or 512× 512) results in a
polynomial increase in the number of model parameters, which
can lead to memory limitations and higher computational
demands. To address these challenges in high-resolution sim-
ulations, we introduce a windowing technique that partitions
the grid into smaller sections (e.g., 32× 32 or 64× 64). This
approach is effective due to the typically uniform nature of
the conductance matrix across the design. The calculation
of G−1 on a small grid results in similar accuracy as for
the full chip since the values are uniform. Our window-
based method is described in Algorithm.1. In our algorithm,
first, we divide our power and temperature map into smaller
windows based on the window size and stride step to have
overlapping windows. We then apply linear regression to each
window, adjusting the model’s parameters based on the error
in each window sample. By sweeping overlapping windows
across the grid, we capture more accurate power propagation



4

(a) Monolithic 3D architecture (b) 2D floorplan

Fig. 2: (a) A monolithic 3D architecture with three active
layers, one computation unit layer, and two memory layers,
(b) Top view of block-level floorplan that estimates Intel i7 as
a target

between neighboring regions. Then, we aggregate all of the
predictions. By tracking the number of predictions for each
node (Count matrix), we compute the average of multiple
temperature estimates for overlapping nodes to ensure the
predictions remain within a reasonable range. Choosing an
appropriate window size is crucial since selecting a window
that is too small compared with the grid can prolong simulation
time and decrease the accuracy of the prediction. Generally,
we observed a window size that is about a quarter of the grid
provides a good balance between low model complexity while
maintaining high accuracy and speed.

IV. EVALUATION

This section first describes our method’s experimental setup
and then demonstrates our ML model’s benefits. Our primary
objective is to evaluate the accuracy of our framework across
various simulation resolutions and methods by comparing its
outputs with actual results generated by a compact thermal
simulator. We also measure the speedup improvements gained
by using this framework.

A. Experimental Setup

We evaluate our method on multiple designs. For the 2D
design, we use Intel i7 6950× processor block level floorplan,
as shown in Fig. 2b, and we run ten different applications from
the NAS parallel benchmarks [22] using Sniper [23] and gener-
ate power consumption traces with McPAT [24]. We configure
the input file in McPAT by instantiating each component (e.g.,
core0, core1, etc.), ensuring accurate power modeling for all
cores and components. This allows us to simulate the power
usage and generate the power traces required for thermal
simulation in PACT. Maximum total power in this case is
140W . In our 3D design simulation, we evaluate a monolithic
3D architecture with two configurations: one with three active
layers and another with two active layers. In both designs, the
total power of each layer does not exceed 140W . Each layer

has a maximum temperature of near 100◦C to demonstrate
that our method can handle real-world scenarios even with
high-temperature differences in the chip (Fig.2 shows a top
view of 2D and 3D architecture used in our experiments).
Additionally, we use a fixed chip size of 20mm × 20mm
and double the number of compute cores within this fixed
area. As a result, the size of each core was reduced to fit
within the same chip dimensions. We consider the whole chip’s
maximum total power to be 200W , distributing it to different
cores with a uniform distribution. This setup demonstrates
how our model can adapt to changes in the floorplan, with
only a few samples. For the grid, we used sizes of 64 × 64,
128× 128, 256× 256, and 512× 512, while in the windowed
linear regression experiment, we employed a grid window size
of 32× 32 and 64× 64 windows with a stride step size of 4
and 16, respectively.

We adopt the compact thermal simulator PACT [8] in our
approach. PACT stands out among other simulators due to its
parallelized architecture, enabling the use of multiple CPUs
to accelerate thermal simulations. Since it is already efficient
by nature, we select PACT in this work to demonstrate our
approach can further speed up the simulation even when
running on top of the state-of-the-art parallel simulator. In
our experimental evaluation, the performance of our method
will be assessed using a number of key metrics: simulation
time as an indicator of computational efficiency, the mean
squared error (MSE), and mean absolute error (MAE) of
all temperature predictions of the chip for quantifying the
accuracy of temperature prediction given ground truth data.
Moreover, we considered the peak temperature difference
(maximum error) on the whole chip, which is relevant to
fixing the performance of our method in terms of detecting
hot spots and thermal variations, particularly under steep
temperature gradient conditions. These measurements allow
for a thorough check of the performance in terms of both
efficiency and accuracy of our methodology. To compare the
model’s prediction time fairly with the PACT simulation, the
training of the model was standardized to 16 CPU cores
without using any GPU cores. This allows the estimation of
the performance of both the model and the PACT simulation
within a comparable framework.

B. Results

In our initial experiments, we assess the accuracy of our
model on the Intel i7 processor architecture. The simulation
is conducted on four different grids, as mentioned in IV-A,
comparing two approaches: a standard linear regression model
and a windowed linear regression model with 32 × 32 and
64 × 64 window sizes. For the standard linear regression
model, we require 6 input samples for training for our three
different grid sizes (the grid size of 512 × 512 is inefficient
using a standard linear regression because of high memory and
computation needed for updating the parameters (Sec.III-C)).
In comparison, the windowed version needs 8 to 12 input
samples for all of the different grid sizes. After training,
we can infer the remaining inputs, showcasing the model’s
ability to generalize effectively with a few training samples.



5

(a) CDF of MSE, MAE, and max temperature error for standard linear regression

(b) CDF of MSE, MAE, and max temperature error for windowed linear
regression

Fig. 3: a) MSE, MAE, and Max temperature error comparison
of Intel i7 with a grid size of 64×64, 128×128, and 256×256
for standard linear regression (1056 total samples) b) MSE,
MAE, and Max temperature error comparison of Intel i7 with
a grid size of 64× 64, 128× 128, 256× 256, and 512× 512
for window-based linear regression (1228 total samples)

(a) PACT and ML prediction using standard linear regression

(b) PACT and ML prediction using windowed linear regression

Fig. 4: Thermal map comparison between PACT simulation
output and our method prediction

Fig.3 shows the cumulative distribution function (CDF) of
the MSE and MAE for inference inputs across both models
with different grid sizes. For standard linear regression, more
than 90% of the inputs have MSE below 0.5◦C2. More than
95% of the inputs have MAE below 0.7◦C. These results
are comparable to those obtained using the windowed model.
However, the windowed approach shows a slower reduction
pace due to its fewer parameters compared to standard re-
gression and it needs to go through all of the grids with an

Fig. 5: MSE and MAE error for 3-layer 3D architecture with
a grid size of 128× 128 over 140 different samples

Fig. 6: CDF of MSE, MAE, and Max Temperature Error of
3-layer and 2-layer 3D architecture with grid sizes of 64× 64
and 128× 128 (1170 total input samples)

Fig. 7: PACT and ML prediction for each layer of an input
sample of monolithic 3D design

overlap step. As seen, both models demonstrate promising
inference performance that more than 83% of the inputs have
maximum temperature error below 2◦C. With the windowed
regression, we reduce the model size by a factor of 256 in grid
size of 256× 256 while preserving accuracy. Fig.4 compares
PACT’s outputs with our model’s predictions for two sample
cases, showing that the general and windowed models produce
accurate results. Achieving high accuracy over different grids
demonstrates the scalability of our approach while maintaining
accuracy at larger grid sizes.

To further validate the robustness of our method in handling
complex architectures, we applied it to two monolithic 3D
designs (Fig.2a), one with two and the other with three layers,
to predict temperature distribution. The simulation utilizes
64 × 64 and 128 × 128 grids, ensuring consistency with our
earlier experiments. As depicted in Fig.5, as an example, the
MSE and MAE were assessed over 140 samples for three-layer
3D architecture. The gray area in the figure corresponds to the



6

training phase, with only 6 samples used to train the model,
while the green area corresponds to the inference phase. The
method keeps the error low even with such a complex 3D
architecture. It maintains MAE on inference not higher than
2◦C, showing it effectively generalizes with a small number
of training samples while keeping prediction quality. Fig.6
presents that for both MSE and MAE, above 95% of the
inference samples for all of our simulations on different 3D
architectures with various grid sizes are below 0.5◦C2 and
0.7◦C respectively. The maximum temperature error, as in
Fig.6, above 87% of the inference samples, are below 0.5◦C.
That reflects the scalability and adaptability of the method to
more complicated architectures. Fig.7 shows the comparison
between the output of PACT and the prediction of our method
for a particular sample, which demonstrates a strong match. A
large temperature gradient and a hot spot near 100◦C appear
in this experiment, showcasing the difficulty of the testing
scenario with extreme thermal conditions. Our method predicts
the temperature distribution accurately despite the extremes in
this experiment, strengthening the robustness of our method
to handle sharp gradients and corner cases effectively, even at
high temperatures. We also try to simulate with a grid size
of 256 × 256 for a couple of samples from the 2-layer 3D
configuration (less than 20 input samples), which, for PACT,
takes around 15 to 25 minutes to generate the output. Still,
our model can predict the chip temperature after training with
a few samples in just 40 to 50 seconds.

In the following set of experiments, we aim to demonstrate
the ability of our approach to adapt and fine-tune itself for
new architectures and floorplans using only a few training
samples. As described in SectionIV-A, we use a fixed chip with
random floorplans. We generate 100 unique power maps for
each floorplan. Then, after processing these power maps, we
doubled the number of computation cores on the chip; thus, the
floorplans are increasingly complex. When the floorplan gets
complicated, more training samples are needed to maintain
high accuracy. We further increase the number of cores to 8
and simulate them with grid sizes of 64× 64 and 128× 128.
For this experiment, we have 800 inputs (400 various power
maps for eight different floorplans), and our method only uses
20 of those samples to detect the changes in the floorplan
and maintain a high accuracy. The MAE and max error of
nearly 95% of the inference samples for all inputs are below
0.5◦C, respectively. This experiment shows that our method
can effectively tune itself after training with only several
samples and then accurately infer the rest. In cases where
more training samples are required, this occurs when there is a
significant architectural shift. Such large architecture changes
take more data to better align the model for high performance.

We compare our method’s simulation time with that of
PACT, a state-of-the-art parallel thermal simulator. As shown
in Fig.8, we measured the simulation time of the ML model
and PACT by summing up the results of experiments that
shared the same architecture and simulation setup but had
different input power maps, leading to fewer bars than the
total number of experiments conducted and compared them.
Our method’s simulation time accounts for the training and
inference stages, as well as the time required to generate the

Fig. 8: Comparing the speedup of our method over all different
simulations, we consistently improve the simulation time.

Fig. 9: Comparing our method with U-net model [21] in terms
of MSE over different input samples

Model Mean Time (ms) Standard Deviation (ms)
U-Net [21] 16.35 6.2× 10−3

GCN [18] 38.56 2.02× 10−3

Our model 10.74 1× 10−3

TABLE I: Comparison of inference time of models with mean
time and standard deviation of 1000 runs.

power maps used as inputs for our ML model, following the
same approach used for PACT. Our method significantly accel-
erates the simulation process and achieves a speedup as high
as 70×, depending on the complexity of the design and the
number of input samples. This shows that our method really
shines on more complicated architectures (e.g., monolithic 3D
architectures) where simulation time is consistently lower than
that of PACT while maintaining accuracy at a very high level.
The runtime variation seen in the results based on the grid size
is because of the need for a few samples generated by PACT
which has different time simulations based on the resolution
of the simulation and also the number of parameters we use
in the ML approach for each grid size prediction. Regarding
random floorplans, regular modification in the layout can
result in multiple training sessions that will surely slow down
our approach. However, this is not a common situation in
real applications where frequent retraining would be rarely
required. In practice, without this additional overhead, our
approach would still obtain very important speedups.

Finally, we compare our method with one of the previous



7

models that have been utilized for temperature prediction. We
use the designed U-net model from [21] instead of our intro-
duced linear regression. Fig.9 compares MSE for our approach
and U-Net on unseen data. It demonstrates that our model
achieves the intended accuracy within 6 samples; however, U-
net needs many more samples for training to achieve similar
accuracy. Our method significantly reduces training time and
the number of samples needed, from thousands of samples to
fewer than 15. We train our model with only a few samples
since linear regression in comparison with other methods has
fewer parameters, relies on linear relation between inputs and
outputs, and can often find the best fit directly using a closed-
form formula. As a result, it reaches an acceptable accuracy
after training with a few samples. This low-latency framework
is especially crucial in architecture optimization and design,
where temperature simulations are often performed repeatedly
on changing floorplans. Not only have we reduced the training
time, but we show in Table I that our model has a comparable
inference time to other methods.

V. SUMMARY

This paper introduces a new fast ML-based method for pre-
dicting IC steady-state temperatures using CTMs. Traditional
approaches like FEM are computationally intensive, requiring
significant time and memory for large, complex designs. Our
method integrates ML models with CTMs to achieve fast
thermal simulations by capturing the underlying physics of the
thermal model. Our model requires a few training samples and
does not sacrifice accuracy. We use linear regression aligned
with thermal conduction principles and a windowed approach
to handle larger grid dimensions, reducing computation. As
demonstrated, our model’s accuracy is promising compared
to traditional CTS, which is commonly used as a benchmark
against ML-based thermal predictor methods. Tested on 2D
and 3D chip designs, our method achieves up to a 70× speedup
over simulators like PACT while maintaining high accuracy.

REFERENCES

[1] Y. Sun, C. Zhan, J. Guo, Y. Fu, G. Li, and J. Xia, “Localized thermal
effect of sub-16nm finfet technologies and its impact on circuit reliability
designs and methodologies,” in 2015 IEEE International Reliability
Physics Symposium, 2015, pp. 3D.2.1–3D.2.6.

[2] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and manage-
ment in vlsi circuits: Principles and methods,” Proceedings of the IEEE,
vol. 94, no. 8, pp. 1487–1501, 2006.

[3] S. Makovejev, S. H. Olsen, V. Kilchytska, and J.-P. Raskin, “Time
and frequency domain characterization of transistor self-heating,” IEEE
Transactions on Electron Devices, vol. 60, no. 6, pp. 1844–1851, 2013.

[4] K. Cao, J. Zhou, T. Wei, M. Chen, S. Hu, and K. Li, “A survey of
optimization techniques for thermal-aware 3d processors,” Journal of
Systems Architecture, vol. 97, pp. 397–415, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S138376211830540X

[5] H. Sultan, A. Chauhan, and S. R. Sarangi, “A survey of chip-level
thermal simulators,” ACM Comput. Surv., vol. 52, no. 2, apr 2019.
[Online]. Available: https://doi.org/10.1145/3309544

[6] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. R. Stan, “Hotspot: A compact thermal modeling methodology
for early-stage vlsi design,” IEEE Transactions on very large scale
integration (VLSI) systems, vol. 14, no. 5, pp. 501–513, 2006.

[7] M. N. Sabry, “Compact thermal models for electronic systems,” Compo-
nents and Packaging Technologies, IEEE Transactions on, vol. 26, pp.
179 – 185, 04 2003.

[8] Z. Yuan, P. Shukla, S. Chetoui, S. Nemtzow, S. Reda, and A. K.
Coskun, “Pact: An extensible parallel thermal simulator for emerging
integration and cooling technologies,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp.
1048–1061, 2021.

[9] F. Kaplan, S. Reda, and A. K. Coskun, “Fast thermal modeling of liquid,
thermoelectric, and hybrid cooling,” in 2017 16th IEEE Intersociety Con-
ference on Thermal and Thermomechanical Phenomena in Electronic
Systems (ITherm), 2017, pp. 726–735.

[10] Z. Yuan, G. Vaartstra, P. Shukla, M. Said, S. Reda, E. Wang, and A. K.
Coskun, “Two-phase vapor chambers with micropillar evaporators: A
new approach to remove heat from future high-performance chips,” in
2019 18th IEEE Intersociety Conference on Thermal and Thermome-
chanical Phenomena in Electronic Systems (ITherm), 2019, pp. 456–
464.

[11] S. Sadiqbatcha, J. Zhang, H. Zhao, H. Amrouch, J. Henkel, and S. Tan,
“Post-silicon heat-source identification and machine-learning-based ther-
mal modeling using infrared thermal imaging,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. PP, pp.
1–1, 07 2020.

[12] K. Zhang, A. Guliani, S. Ogrenci-Memik, G. Memik, K. Yoshii,
R. Sankaran, and P. Beckman, “Machine learning-based temperature
prediction for runtime thermal management across system components,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 2,
pp. 405–419, 2018.

[13] A. Kumar, N. Chang, D. Geb, H. He, S. Pan, J. Wen, S. Asgari,
M. Abarham, and C. Ortiz, “Ml-based fast on-chip transient thermal
simulation for heterogeneous 2.5d/3d ic designs,” in 2022 International
Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2022,
pp. 1–8.

[14] J. Lu, J. Zhang, and S. X.-D. Tan, “Real-time thermal map estimation
for amd multi-core cpus using transformer,” in 2023 IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD), 2023, pp.
1–7.

[15] C. Knox, Z. Yuan, and A. K. Coskun, “Machine learning and simulation
based temperature prediction on high-performance processors,” in In-
ternational Electronic Packaging Technical Conference and Exhibition,
vol. 86557. American Society of Mechanical Engineers, 2022, p.
V001T05A001.

[16] M. Hajikhodaverdian, S. Reda, and A. K. Coskun, “Fast machine
learning based prediction for temperature simulation using compact
models,” in 2025 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2025.

[17] S. Sadiqbatcha, J. Zhang, H. Amrouch, and S. X.-D. Tan, “Real-time
full-chip thermal tracking: A post-silicon, machine learning perspective,”
IEEE Transactions on Computers, vol. 71, no. 6, pp. 1411–1424, 2022.

[18] L. Chen, W. Jin, and S. X.-D. Tan, “Fast thermal analysis for chiplet
design based on graph convolution networks,” in 2022 27th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2022, pp.
485–492.

[19] R. Ranade, H. He, J. Pathak, N. Chang, A. Kumar, and J. Wen,
“A thermal machine learning solver for chip simulation,” in
Proceedings of the 2022 ACM/IEEE Workshop on Machine Learning
for CAD, ser. MLCAD ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 111–117. [Online]. Available:
https://doi.org/10.1145/3551901.3556484

[20] J. Wen, S. Pan, N. Chang, W.-T. Chuang, W. Xia, D. Zhu, A. Kumar,
E.-C. Yang, K. Srinivasan, and Y.-S. Li, “Dnn-based fast static on-chip
thermal solver,” in 2020 36th Semiconductor Thermal Measurement,
Modeling and Management Symposium (SEMI-THERM), 2020, pp. 65–
75.

[21] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S.
Sapatnekar, “Thermal and ir drop analysis using convolutional encoder-
decoder networks,” in 2021 26th Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), 2021, pp. 690–696.

[22] D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The nas parallel
benchmarks,” 08 1993.

[23] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11. New York, NY, USA: Association for Computing Machinery,
2011. [Online]. Available: https://doi.org/10.1145/2063384.2063454

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 469–480. [Online].
Available: https://doi.org/10.1145/1669112.1669172


