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Abstract—High-Performance Computing (HPC) systems are
critical for many scientific applications, but they are often subject
to performance variations due to ”anomalies”, which can lead
to reduced efficiency and higher operational costs. To address
this, machine learning (ML) techniques have been increasingly
applied to automatically detect performance anomalies. However,
traditional unsupervised anomaly detection methods assume that
training datasets are free of anomalies. In real-world HPC
systems, though, data is typically contaminated by anomalies
caused by factors such as shared resource contention, software
bugs, or hardware failures. These anomalies in the training data
can significantly undermine the performance of ML models.
To overcome this issue, we introduce Refine, a robust anomaly
detection framework based on variational autoencoders (VAEs).
Refine iteratively removes high-error samples during training in
an unsupervised manner. By gradually reducing the proportion
of anomalies in the training dataset based on reconstruction
error, our approach enhances the model’s robustness and overall
performance. We evaluate Refine using data collected from a pro-
duction HPC system, Eclipse, and demonstrate its effectiveness in
handling varying levels of contamination. Even with up to 10%
anomalies in the training dataset, Refine achieves an F1-score of
0.88, outperforming state-of-the-art unsupervised anomaly detec-
tion methods. Moreover, when applied to real production system
data, Refine achieves 100% accuracy in detecting anomalies.

Index Terms—High Performance Computing, Machine Learn-
ing, Anomaly Detection

I. INTRODUCTION

High-Performance Computing (HPC) systems play a crucial
role in advancing scientific and engineering research, pow-
ering applications such as drug discovery, climate modeling,
and nuclear physics. These systems, comprising thousands
of compute nodes, offer immense computational power to
tackle complex problems. However, the advent of exascale
computing has introduced a higher degree of heterogeneity
and complexity into the HPC infrastructure [1]. This increased
complexity, coupled with a higher degree of resource sharing,
has made HPC systems more susceptible to performance
variations.

Performance variations in HPC systems can be attributed
to a range of factors, including hardware-related issues [2],

shared resource contention [3], network congestion [4], or
memory problems [5] such as memory leaks. While resource
contention itself is expected in HPC systems, its severity
can vary widely. In this work, we classify contention-related
performance degradations as anomalies because, despite not
being indicative of bugs or hardware failures, these degra-
dations can substantially and unexpectedly affect application
runtimes, reducing computational efficiency and increasing
operational costs [2]. Subtle and transient anomalies of this
kind are especially challenging to identify as they degrade
system efficiency without causing outright failures or crashes.
In this work, we focus on detecting anomalies that cause
performance variations but do not necessarily lead to system
failures or crashes.

Modern HPC systems leverage monitoring frameworks to
gather extensive telemetry data, including performance met-
rics, system logs, and traces. However, the sheer volume of
data generated by these systems—often reaching billions of
data points daily—presents a significant challenge. Manual
analysis of this data is impractical and prone to errors,
making automated performance analysis techniques essential.
Machine learning (ML) has emerged as a promising solution
for anomaly detection and diagnosis, enabling system admin-
istrators to identify and mitigate performance issues more
efficiently. Specifically, researchers have developed several
techniques using supervised learning to detect and diagnose
anomalies in HPC systems [6], [7]. These methods train
models on labeled data to accurately identify performance
issues. However, the telemetry data collected from monitoring
systems is vastly unlabeled, and obtaining labels from domain
experts is time-consuming, costly, and often infeasible. This
lack of labeled data significantly limits the applicability of
supervised learning approaches in real-world HPC environ-
ments. To relax the labeled data requirements, prior works
have applied semi-supervised learning methods [8], [9], which
use a combination of labeled and unlabeled data to improve
model performance. These methods leverage a small amount
of labeled data to guide the learning process, but they still face



challenges when labeled data is scarce.
To address the lack of labeled data problem, recent

works [10], [11], utilize unsupervised learning approaches.
These existing unsupervised approaches either focus on de-
tecting node failures or system crashes, which do not address
the more challenging task of detecting performance anomalies,
or they assume the training dataset is anomaly-free, which
limits their usability in production HPC systems as real-world
data is often not completely anomaly-free. To address the
aforementioned problems, this paper introduces a novel robust
variational autoencoder (VAE) [12] based training strategy
that detects performance anomalies in compute nodes with
high accuracy even when the training dataset is contaminated
with anomalies. The key novelty of our method is its iterative
data removal strategy, which progressively refines the training
dataset by exploiting the difference in reconstruction errors
between healthy and anomalous samples. This difference is
most pronounced during the early stages of VAE training.
By iteratively removing high-error samples, we reduce the
anomaly ratio (number of anomalous samples divided by the
total number of samples in the dataset) in the training dataset
without requiring label information. This process enables the
model to learn a more accurate representation of normal
(healthy) system behavior, thereby improving its ability to
distinguish between healthy and anomalous samples. Figure 1
provides an overview of Refine pipeline. Our specific contri-
butions are as follows:

• Design of Refine, a robust unsupervised anomaly detec-
tion framework that detects performance anomalies under
data contamination.

• Demonstration of our framework using real and proxy
HPC applications. Our framework achieves an 0.88 F1-
score for classifying synthetic anomalies, even when the
training dataset initially has a 10% anomaly ratio.

• Application of our framework to real-world production
system data. Our framework demonstrates significant
accuracy improvement, achieving 100% accuracy in iden-
tifying real-world performance anomalies under data con-
tamination.

II. RELATED WORK

A. Unsupervised Anomaly Detection in HPC Systems

State-of-the-art methods for unsupervised anomaly detec-
tion in the HPC domain predominantly adopt reconstruction
error-based approaches. RUAD [10] utilizes an LSTM-based
autoencoder to detect system faults, training separate models
for each compute node on raw time series data. However,
maintaining separate models for each compute node may
not be feasible as the system scales to thousands of nodes.
Prodigy [11] uses a VAE-based framework to detect perfor-
mance anomalies caused by shared resource contention. How-
ever, Prodigy assumes that the training dataset is anomaly-free,
which may not hold in real-world scenarios.

B. Unsupervised Anomaly Detection with Contaminated
Training Dataset

In practice, it is unrealistic to assume that training datasets
are entirely free of anomalies. Even a small proportion of
anomalous samples in the training dataset can significantly
degrade the performance of unsupervised anomaly detection
models. Therefore, researchers have developed various meth-
ods to handle contaminated training dataset in the context
of multivariate time series anomaly detection, which can be
broadly categorized into three types:

The first category modifies reconstruction-based methods
to enhance robustness. For instance, Normality-Calibrated
Autoencoder (NCAE) [13] leverages a joint generative ad-
versarial network (GAN) [14] to adversarially generate high-
confidence normal samples from a low-entropy latent space.
These samples serve as references to identify anomalous data
and mitigate their impact by maximizing their reconstruction
errors. Similarly, NegCo [15] employs a GAN to generate
representative normal samples from a Gaussian distribution
in the latent space. Instead of directly suppressing anomalous
samples, NegCo uses these representative samples to model
the negative correlation between morphological similarity
and reconstruction consistency, effectively recalibrating biased
anomaly measurements in contaminated datasets. This soft
contamination calibration strategy significantly improves per-
formance, especially in heavily contaminated datasets, without
relying on hard thresholds. RDSSM [16] addresses the chal-
lenge of contaminated training dataset in multivariate time-
series by combining robust statistics with deep state space
modeling. It introduces a novel decoder structure employing a
Gamma prior and t-distribution, enabling robust training and
adaptive anomaly scoring even in the presence of anomalies.

Moving beyond reconstruction-based methods, some tech-
niques use more robust base models and methods to account
for contamination. COUTA [17] employs Deep Support Vector
Data Description [18], which is less affected by contam-
ination, and incorporates synthetic anomaly injection and
uncertainty modeling to assess anomaly likelihood, reducing
the weight of likely contaminated samples. Latent Outlier
Exposure (LOE) [19] employs two coupled loss functions: one
optimized for normal samples and the other for anomalous
ones. By jointly learning model parameters and inferring
binary labels (normal vs. anomalous) for the training data,
LOE alternates between these updates using block coordinate
descent. This approach not only learns to identify anomalies
but also uses insights from anomalous data to improve the
model’s representation of normal behavior. MTGFlow [20]
builds on the assumption that anomalous samples exhibit
sparser densities compared to normal ones and employs dy-
namic graph structure learning to model evolving interdepen-
dencies among entities. Additionally, MTGFlow incorporates
entity-aware normalizing flows to estimate fine-grained, entity-
specific density distributions.

The final category adds enhancements to existing models
for better performance with contaminated data. The IAD [21]



Fig. 1: Overview of the Refine pipeline. The process begins with a contaminated training dataset and analyzes reconstruction
errors during training to identify the knee point, the epoch where the model starts to overfit anomalous samples. Refine removes
high-error samples based on the 95th percentile threshold of reconstruction errors calculated at this knee point. The framework
then retrains the model on the refined dataset and uses the trained model to predict anomalies in the test dataset, applying a
threshold derived from the 99th percentile of reconstruction errors in the refined training data. This iterative process repeats
until the framework achieves the desired performance or reaches a predefined iteration limit.

framework introduces an iterative learning process for anomaly
detection that dynamically adjusts importance weights for each
sample based on their likelihood of being normal, refined at
every iteration using anomaly scores. This approach, which
is model-agnostic and robust to varying contamination ratios,
avoids reliance on hyperparameter-sensitive pseudo-labeling.
By employing a novel termination criterion that tracks con-
vergence in anomaly score rankings, IAD effectively enhances
the robustness of base models, achieving improved perfor-
mance across diverse datasets. The authors introduce a novel
approach, RejEx [22], that leverages a stability-based confi-
dence metric to identify and reject low-confidence predictions,
enabling robust decision-making without the need for labeled
data.This method enhances the reliability of predictions by sys-
tematically filtering out uncertain outputs, thereby improving
the overall performance of anomaly detection systems.

Our work differs from prior approaches by implementing an
iterative filtering mechanism that removes high-error samples
from the training set in an unsupervised manner, without
making any assumptions about the anomaly ratio in the
training dataset. Additionally, our method detects performance
anomalies in HPC applications arising from shared resource
contention, which are often challenging to identify.

III. BACKGROUND

This section provides background on VAEs and their role
in the Refine framework, which leverages reconstruction error
properties of VAEs to detect performance anomalies in HPC
systems.

A VAE is a generative model that encodes input data into
a latent space and decodes it back to the original space. It
consists of two main components: an encoder and a decoder.
The encoder compresses the input x into a lower-dimensional
latent representation, producing the mean zmean and log vari-
ance zlog var of the latent variables. The decoder reconstructs
the original input from the latent variables z, sampled using
the reparameterization trick:

z = zmean + exp(0.5× zlog var)× ϵ, ϵ ∼ N (0, 1). (1)

The reparameterization trick plays a crucial role by reformulat-
ing the stochastic sampling operation as a differentiable trans-
formation, enabling gradient-based optimization and allowing
us to train the VAE end-to-end.

We train the VAE to minimize a combined loss function
that includes a reconstruction loss and a Kullback-Leibler
(KL) [23] divergence loss (LKL). The reconstruction loss
(Lrecon) measures how well the decoder reconstructs the input
data and is given by:

Lrecon =

N∑
i=1

(xi − x̂i)
2, (2)

where N is the number of data points, xi represents the input
data, and x̂i represents the reconstructed output.

The LKL regularizes the latent distribution to be close to a
standard normal distribution:

LKL = −0.5
D∑

j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
, (3)

where D represents the dimensionality of the latent space, µj

is the mean, and σj is the standard deviation of the latent
variables.

The total loss function is:

Ltotal = Lrecon + βLKL, (4)

where β is a hyperparameter that controls the trade-off be-
tween reconstruction fidelity and the smoothness of the latent
space.

In our framework, Refine, the goal of the VAE is to learn the
characteristics of healthy application runs. The latent space en-
codes patterns that capture underlying normal behavior. When
the VAE processes anomalous samples, their deviations from
the learned normal patterns result in higher reconstruction
errors. We use this property to detect anomalies. Specifically,
we compute the reconstruction error for each sample as the
Mean Absolute Error (MAE) between the input x and the



TABLE I: The list of applications we run on Eclipse and Volta
for data collection.

Eclipse
Application Description

Real Applications LAMMPS Molecular dynamics
HACC Cosmological simulation
SW4 Seismic modeling

ECP Proxy Suite EXAMINIMD Molecular dynamics
SWFFT 3D Fast Fourier Transform
SW4LITE Numerical kernel optimizations

Volta
Application Description

NAS BT Block tri-diagonal solver
CG Conjugate gradient
FT 3D Fast Fourier Transform
LU Gauss-Seidel solver
MG Multi-grid on meshes
SP Scalar penta-diagonal solver

Mantevo MINIMD Molecular dynamics
COMD Molecular dynamics
MINIGHOST Partial differential equations
MINIAMR Stencil calculation

Other KRIPKE Particle transport

reconstructed output x̂ using it to identify anomalous samples
based on a defined threshold.:

MAE =
1

N

N∑
i=1

|xi − x̂i| . (5)

IV. EXPERIMENTAL METHODOLOGY

The goal of our experiments is to evaluate the robustness
and effectiveness of Refine in detecting performance anoma-
lies in HPC systems. We achieve this by running diverse
HPC applications on two systems, Eclipse and Volta, collect-
ing telemetry data during their execution, injecting synthetic
anomalies to mimic real-world conditions, and assessing the
performance of Refine in detecting these anomalies. This
section provides details about the HPC systems, applications,
injected anomalies, and the telemetry data collection process.

A. HPC System & Applications

We use two different HPC systems, Eclipse and Volta,
to run various HPC applications, from which we gather the
telemetry data necessary for our framework. Eclipse is a
production HPC cluster consisting of 1,488 compute nodes
and 53,568 cores, located at Sandia National Laboratories.
It has a peak performance of 1.800 petaflops. Volta, also
from Sandia National Laboratories, is a Cray XC30m testbed
supercomputer with 52 compute nodes. It features 52 compute
nodes organized across 13 interconnected switches, with each
switch supporting four nodes. We run 6 applications on the
Eclipse system and 11 applications on the Volta system. Table
I lists the applications we use and the respective HPC systems
they run on. On Eclipse, we run three real-world applications
and three from the Exascale Computing Project (ECP) Proxy
Suite. These applications are representative of production
workloads, ranging from molecular dynamics to seismic and

numerical simulations. On Volta, we run six benchmarks from
the NAS Parallel Benchmark Suite, four applications from the
Mantevo mini-app suite, and one particle transport application
(Kripke). These benchmarks and mini-apps are widely used
for testing and optimizing HPC system performance. We
execute each application on 4, 8, and 16 compute nodes,
using 3 different input decks for each configuration. The
runtime for each application ranges from 20 to 40 minutes,
depending on the application and the specific input deck. After
running the applications and injecting synthetic anomalies—by
executing anomaly-generating code on the application’s nodes
to simulate contention—we collect 24,566 samples (6,325
healthy) from the Eclipse system and 20,915 samples (18,980
healthy) from the Volta system. To create our train-test split,
we divide the collected samples into a 20-80% ratio, where
20% of the samples are allocated for training and 80% for
testing. Each sample represents the feature-extracted teleme-
try data of a single application run on a specific compute
node. We repeat this train-test split process five times using
stratified sampling to ensure that the class distribution in
the training and test datasets matches the distribution in the
entire dataset. Repeating this process exposes the model to
different portions of the data during training and testing,
providing a more comprehensive evaluation of its performance.
We allocate 20% of the data for training due to the high
proportion of anomalous samples in the Eclipse dataset. This
allocation ensures a smaller training dataset, maintaining an
initial anomaly ratio of 10% in the training dataset. We choose
this ratio based on observed outlier behavior in Eclipse, where
anomalies naturally occur at rates ranging from 2% to 7%. For
experiments involving lower initial anomaly ratios (e.g., below
10%) in the training dataset, we reduce anomalous samples
from the training dataset in a stratified manner, preserving the
proportional class distribution from the original 10% setup.

B. Synthetic Anomalies

Obtaining a large dataset of ground truth labels (e.g., thou-
sands of labels of known anomalies) for real-world anoma-
lies is challenging; therefore, we use the High Performance
Anomaly Suite (HPAS) [24] to generate labeled data for our
controlled experiments. HPAS is an open-source framework
that replicates common performance anomalies across key
subsystems, including the CPU, cache, memory, network, and
shared storage. While executing an application on multiple
compute nodes, we inject synthetic anomalies into every node
the application uses for the Eclipse dataset. In the Volta
dataset, we inject anomalies into only one compute node per
application run. If an anomaly is injected, the telemetry data
collected from that node is labeled with the anomaly type;
otherwise, it is labeled as healthy. The specific anomalies and
their configurations are detailed in Table II. Each anomaly
type is configured with parameters that simulate performance
issues:

• CPU Contention (cpuoccupy): Simulates high CPU uti-
lization by occupying a specified percentage of a core’s
capacity. This anomaly mimics scenarios where processes



TABLE II: The configuration details of the injected anomalies.

Anomaly type Configuration
cpuoccupy -u 100%, 80%
cachecopy -c L1,-m 1 / -c L2 -m 2
membw -s 4K, 8K, 32K
memleak -s 1M, -p 0.2 / -s 3M -p 0.4 / -s 10M -p 1

compete for CPU resources, leading to reduced perfor-
mance.

– Utilization (-u): Specifies the percentage of CPU
capacity to be occupied, with values set to 100%
and 80%. This simulates situations where the CPU
is either fully saturated or under significant load,
common in HPC environments with computationally
intensive tasks.

• Cache Contention (cachecopy): Generates cache read and
write operations to induce contention at different cache
levels.

– Cache Level (-c): Indicates the targeted cache level,
either L1 or L2.

– Multiplier (-m): Determines the intensity of cache
operations. A higher multiplier (e.g., 2) results in
more intense operations compared to a lower multi-
plier (e.g., 1).

• Memory Bandwidth Contention (membw): Creates mem-
ory write operations to stress memory bandwidth, simu-
lating scenarios where memory-bound applications expe-
rience bottlenecks.

– Buffer Size (-s): Specifies the size of the memory
buffer used in operations, with values set to 4 KB,
8 KB, and 32 KB.

• Memory Leak (memleak): Simulates a memory leak
by continuously allocating and filling memory without
releasing it.

– Buffer Size (-s): Defines the size of each memory
allocation, set to 1 MB, 3 MB, and 10 MB. Larger
buffer sizes simulate more aggressive memory con-
sumption.

– Allocation Period (-p): Specifies the time interval
between successive memory allocations, with values
set to 0.2 seconds, 0.4 seconds, and 1 second. Shorter
intervals simulate faster memory leaks, where re-
sources are consumed at an accelerated rate.

We select these configurations to represent a range of perfor-
mance anomalies that occur in HPC environments, allowing us
to evaluate the robustness and effectiveness of our framework
under various stress conditions.

C. Monitoring Framework

We use the Lightweight Distributed Metric Service
(LDMS) [25] to collect telemetry data from various subsys-
tems and performance counters on our compute nodes with
minimal overhead and 1Hz sampling frequency. The collected
telemetry from each application run on a given compute
node is in the form of numeric multivariate time series data,

Algorithm 1 Iterative Robust VAE Training
Input: Contaminated Dataset D, VAE model parameters
Output: Trained VAE model

Initialize VAE model parameters.
Define hyperparameters:

ϵ = 95th percentile threshold for removing high-error
samples from the training set.
Nepochs = Number of epochs for each training cycle.
α = Desired test accuracy.
Nmax iter = Maximum number of iterations.

Initialize iteration counter t← 0.
while t < Nmax iter and test accuracy < α do

Train VAE model for Nepochs epochs on dataset D.
Calculate reconstruction errors for all samples in D.
Determine knee point Nknee of the reconstruction loss
curve.
Train VAE model from scratch up to Nknee epochs on
dataset D.
Remove samples from the training set that have recon-
struction errors higher than ϵth percentile of reconstruc-
tion errors in D.
Train VAE model from scratch for Nepochs epochs on the
filtered dataset D.
Make predictions on the test dataset and evaluate accu-
racy.
t← t+ 1

end while
return Trained VAE model.

represented as X ∈ Rt×m, where t denotes the time dimension
and m represents the number of collected metrics. We collect
806 metrics from the Eclipse system and 721 metrics from
the Volta system. These metrics include memory usage (e.g.,
free, active memory), CPU activity (e.g., user and idle time),
network traffic (e.g., number of received/transmitted packets),
shared file system operations (e.g., open, close, and write
counts), and Cray performance counters (e.g., power consump-
tion, write-back counters). Due to significant fluctuations in
per-core metrics for the same application run, we exclude
them and retain only node-level CPU metrics along with other
sampled metrics, resulting in a total of 156 metrics in our
framework.

V. ROBUST UNSUPERVISED ANOMALY DETECTION

Our primary objective is to accurately detect performance
anomalies in HPC systems, even when the training data is
contaminated. We focus on identifying whether applications
running on compute nodes are healthy or anomalous, par-
ticularly aiming to detect anomalies that cause performance
variability without resulting in program errors or premature
termination. We design our robust VAE training framework
to enhance anomaly detection accuracy despite the challenges
posed by contaminated training datasets.

The framework includes several stages: feature extraction,
feature selection, feature scaling, unsupervised training, and



Fig. 2: The effect of anomalous samples on test dataset
performance with Prodigy. When the anomaly ratio in the
training dataset increases to 10%, the F1-score in the Eclipse
dataset drops from 0.90 to below 0.55.

anomaly detection. We collect telemetry data from compute
nodes running both normal and anomalous workloads. During
the feature extraction stage, we generate a comprehensive
set of features from the raw telemetry data. In the feature
selection stage, we identify the most discriminative features to
reduce dimensionality and improve classification performance.
Feature scaling stage ensures that all features are normalized to
a consistent range, which helps improve the model’s training
stability. The unsupervised training stage involves training a
VAE using the selected features. To enhance robustness, we
iteratively identify and remove samples with high reconstruc-
tion errors, retrain the model, and repeat the process until we
achieve the desired anomaly detection accuracy on the test
dataset or reach a predefined number of iterations.

A. Feature Extraction

In order to obtain different time series characteristics, we
apply feature extraction using the TSFRESH [26] open-source
toolkit. TSFRESH computes 794 features for each metric
based on 63 distinct time series characterization methods.
These extracted features provide a detailed description of the
time series, often revealing underlying patterns and behaviors
that are not immediately apparent. The features include basic
descriptive statistics (e.g., min, max, mean) as well as more
advanced measures such as absolute energy of time series,
Benford correlation [27], and the variation coefficient.

B. Feature Selection & Scaling

To reduce the dimensionality of the dataset and improve
classification performance, we use the Chi-square [28] feature
selection method. During the feature selection process, we use
one labeled sample for each application and anomaly (and
healthy) pair, resulting in 30 labeled samples (both healthy
and anomalous) for the Eclipse dataset and 55 labeled samples
for the Volta dataset, thus requiring minimal supervision. We
experiment with different numbers of features (250, 500, 1000,
2000, and 4000) and find that our model performs best with the
top 2000 features. After feature selection, we apply a MinMax

Fig. 3: Average reconstruction errors of healthy and anomalous
samples during the VAE training stage in the Eclipse dataset,
with a 1% anomaly ratio in the training dataset.

scaler to normalize the feature values within the range of 0
and 1. We first fit the scaler on the training dataset and then
apply the same scaler to the test dataset.

C. Iterative Robust VAE Training

When the training dataset is anomaly-free, Prodigy achieves
an F1-score of over 0.80 in both the Eclipse and Volta datasets.
To ensure a fair comparison in Figure 2, we adjust both
the Eclipse and Volta test datasets to have a consistent 10%
anomaly ratio by performing stratified sampling during the
train-test split. However, as the anomaly ratio in the training
dataset increases, performance in the Eclipse dataset declines
significantly, with macro average F1-scores dropping below
55%. We further explore the impact of higher anomaly ratios in
the test datasets on model performance with varying anomaly
ratios in the training dataset. Notably, when the anomaly ratio
in the test dataset reaches 90%, the macro average F1-score in
the Eclipse dataset falls below 20%, and in the Volta dataset,
it drops below 50% when the anomaly ratio in the training
dataset is 10%. In contrast, when the training datasets are
anomaly-free, both datasets maintain an F1-score above 0.80,
regardless of the anomaly ratio in the test dataset.

To address the performance degradation caused by anoma-
lies in the training dataset, we introduce an iterative filtering
mechanism that progressively refines the training dataset by
removing samples with high reconstruction errors to mitigate
the negative impact of anomalous samples. During the VAE
training process, we analyze the reconstruction errors for
healthy and anomalous samples at each epoch to understand
their behavior. As shown in Figure 3, anomalous samples
exhibit higher reconstruction errors compared to healthy sam-
ples, especially in the early training stages. However, as
training progresses, the model starts to overfit these anomalous
samples, and the difference in reconstruction errors begins to
diminish. Leveraging this insight, we identify the knee point
on the overall reconstruction error curve, which includes all
training samples, indicating the epoch where the model stops
learning effectively and begins to overfit. While the knee point
might not perfectly align with the exact moment when the



Fig. 4: Reconstruction error distribution at epoch 20 (knee
point) in the Eclipse dataset with a 1% anomaly ratio in the
training dataset. To enhance visual clarity, the plot scales the
number of anomalous samples by a factor of 20.

difference in average reconstruction errors between healthy
and anomalous samples diminishes, it reliably indicates when
the model starts to overfit anomalous samples. For instance, in
this case, we find the knee point to occur at epoch 20, which
aligns with the observed behavior in the individual curves of
healthy and anomalous samples. As detailed in Algorithm 1,
we then retrain the VAE from scratch up to this knee point
and subsequently compute the 95th percentile of reconstruction
errors in the training dataset. We then remove samples with
reconstruction errors exceeding this threshold from the training
dataset.

Figure 4 illustrates the reconstruction error distribution at
epoch 20 (knee point) in the Eclipse dataset with a 1%
anomaly ratio in the training dataset. Since anomalous samples
are fewer in number, we scale their count by a factor of 20
to make their bar heights more prominent for visual clarity.
The dashed line represents the threshold for removing high-
error samples, calculated as the 95th percentile of average
reconstruction errors in the training dataset. At this epoch,
the average reconstruction error for anomalous samples is
0.0081, while the average reconstruction error for healthy
samples is 0.0037. The figure demonstrates that, after just
one iteration, the framework can successfully remove most
anomalous samples from the training dataset, although some
healthy samples are also eliminated during this process. We
determine the 95th percentile threshold empirically to balance
the removal of anomalous data while retaining sufficient
healthy samples for effective learning. We then retrain the VAE
model with the refined training dataset and make predictions
on the test dataset. To determine whether the sample in the test
dataset is healthy or anomalous, we first make predictions on
the available training dataset and set the threshold as the 99th

percentile of the reconstruction errors from the training dataset.
We establish this threshold based on empirical evaluation to
maximize anomaly detection performance. If the reconstruc-

Fig. 5: Performance of different methods in the Eclipse dataset.
Refine outperforms other baselines when the anomaly ratio in
the training dataset is above 0.005.

tion error of a test sample exceeds this threshold, we classify
the sample as anomalous; otherwise, we classify it as healthy.
This process of training, identifying, and removing high-error
samples followed by making predictions on the test dataset
constitutes a single iteration. Refine repeats this process until
it reaches the desired test accuracy (if labeled samples are
available for evaluation) or meets the predefined iteration limit.

D. Implementation Details

We use Python 3.6.x and TensorFlow 2.6.2 for
our VAE implementation with a fixed random seed
(np.random.seed(42)) for reproducibility. The encoder
consists of an input layer matching the dimensionality of the
feature set, followed by a dense layer that reduces the input
dimensionality by half using ReLU activation. The encoder
maps the input to a latent space with dimensionality set
to one-third of the input dimensions. The decoder mirrors
the encoder structure, taking the latent variables as input,
passing them through a dense layer with ReLU activation,
and reconstructing the input using a sigmoid activation in
the output layer. This ensures that the reconstructed output
remains within the normalized range of the input data. We
use the Adam optimizer with a learning rate of 0.0001 and a
gradient clipping value of 0.5 to stabilize training. We train
the model for 400 epochs with a batch size of 256. We use
the KneeLocator from the kneed [29] library for knee
point detection.

VI. EVALUATION

We evaluate the performance of our framework using the
macro average F1-score, macro average precision, and macro
average recall. These metrics are particularly useful for im-
balanced datasets, where the distribution of class samples is
skewed. Macro average precision is calculated by determining
the precision for each class individually and then averaging
the results. Similarly, macro average recall computes the recall



Fig. 6: Performance of Refine across multiple iterations in-
creases rapidly from 0.19 to 0.88 when the initial anomaly
ratio in the training dataset is 10% for the Eclipse dataset.

for each class and averages the values. The macro average F1-
score provides a balanced assessment by first calculating the
F1-score for each class (the harmonic mean of precision and
recall for that class) and then averaging these F1-scores across
all classes.

We compare our method Refine with various baselines,
including Prodigy, Isolation Forest (IF) [30], Local Outlier
Factor (LOF) [31], NegCo, LOE, NCAE, and IAD. We include
Prodigy because it closely relates to our work on detecting
performance anomalies in HPC systems. IF detects anomalies
by constructing an ensemble of random decision trees and
isolating samples based on the number of splits required;
samples requiring fewer splits are flagged as anomalies due
to their deviation from the majority. LOF identifies anomalies
by comparing the density of a sample to the density of its
nearest neighbors, flagging samples with significantly lower
density as anomalous. While both methods are widely used
for anomaly detection, we include only IF in Figure 5, as it
outperforms LOF on our dataset. The other methods represent
state-of-the-art techniques for unsupervised anomaly detec-
tion that specifically address the challenges of contaminated
datasets and are applicable to our dataset format. We report
the macro average F1-scores based on 5-fold cross-validation
for all approaches. In Figure 5, error bars represent the 95th

percentile confidence intervals, providing a visual indication
of the variability in the model’s performance across different
folds. Shaded areas in Figures 6, 7, 9, and 8 represent 95th

percentile confidence intervals. They show variability in the
metrics: the macro average F1-score in Figure 6, anomaly ratio
in the training dataset in Figure 7, and macro average recall
and precision in Figures 9 and 8.

In Figure 5, we observe that the Refine with a single iteration
achieves an F1-score above 0.80 up to a 1% anomaly ratio
in the training set, but its performance drops below 0.60
when the anomaly ratio in the training dataset exceeds 2%.
The baselines, including Prodigy, NCAE, and IAD, show a
notable decrease in performance as the anomaly ratio in the
training dataset increases. This decline is primarily because
these methods rely on autoencoders, and the presence of

(a) Eclipse dataset

(b) Volta dataset

Fig. 7: Refine removes anomalies in the training dataset over
iterations (see Algorithm 1). (a) Eclipse dataset: The anomaly
ratio decreases gradually over multiple iterations. (b) Volta
dataset: The anomaly ratio decreases rapidly within a few
iterations and stabilizes.

anomalies in the training dataset distorts the training by
disproportionately influencing the reconstruction error, leading
to suboptimal latent representations. The quality of NCAE’s
generated high-confidence normal data suffers due to the dis-
torted latent space caused by contamination, which undermines
its contamination mitigation strategy. In IAD, the weights
assigned to contaminated samples are intended to be lower
than those for normal samples. However, these weights often
remain inconsistent, sometimes resulting in similar or even
higher weights for anomalous data. This inconsistency limits
the effectiveness of such re-weighing strategies, particularly at
higher contamination levels, motivating the need for alterna-
tive approaches that systematically reduce contamination. The
classification performance of IF and LOE remains poor and
stable across all anomaly ratios. LOE’s poor performance is
due to its transformation layers’ inability to effectively handle
the complex structure of our dataset, making it difficult for
the model to differentiate between healthy and anomalous
samples.

The anomaly ratio difference between the training and test
datasets causes the poor performance of IF. In the Eclipse
dataset, we initially set a 10% anomaly ratio in the training



Fig. 8: Macro average precision achieved by Refine across
iterations for varying initial anomaly ratios in the training
dataset.

dataset to reflect realistic conditions. However, due to our
initial data collection strategy, which includes more anomalous
samples, the test dataset naturally ends up with a 90% anomaly
ratio. This imbalance affects IF’s performance, as it relies on a
specified contamination ratio parameter during training, which
does not align well with the actual distribution in the test
dataset.

NegCo performs well when the anomaly ratio in the training
dataset is below 5%. With only a small number of anomalous
samples, the model effectively learns the semantic represen-
tations of true normal behavior, and the Gaussian distribution
of the feature space closely aligns with this normal behavior.
This allows the framework to generate reliable representative
normal samples and maintain a distinct separation between
normal and anomalous data. However, as the anomaly ratio
reaches 10%, the presence of anomalous samples during
training increasingly distorts the learned feature space, causing
the Gaussian distribution to shift away from representing true
normal behavior. This distortion undermines the framework’s
ability to generate accurate representative normal samples
and reduces the reliability of the morphological similarity
measure, ultimately impairing the model’s performance in
distinguishing normal and anomalous samples.

To mitigate the performance degradation that occurs at
higher anomaly ratios in the training dataset, we run Refine
across multiple iterations, testing with initial anomaly ratios
of 1%, 2%, 5%, and 10% in the training dataset.

Figure 6 shows the F1-score we achieve on the test dataset
after each iteration. As expected, with higher anomaly ratios
in the training dataset, the starting F1-score is lower because
a higher anomaly ratio results in a lower F1-score on the test
dataset. For instance, with a 10% anomaly ratio in the training
dataset, the starting F1-score is 0.19. However, after 20 itera-
tions, Refine achieves an F1-score above 0.80, representing a
400% improvement. When we apply Refine iteratively, it out-
performs all other baselines, regardless of the initial anomaly
ratio in the training dataset, demonstrating its effectiveness
across different levels of data contamination. Figure 7 shows
that using the iterative method, it takes approximately 20

Fig. 9: Macro average recall achieved by Refine across itera-
tions for varying initial anomaly ratios in the training dataset.

iterations to remove all anomalous samples at a 10% train
anomaly ratio for the Eclipse dataset, 10 iterations at 5%, 4
iterations at 2%, and just 2 iterations at 1%. In contrast, for the
Volta dataset, the anomaly ratio decreases rapidly within the
first few iterations and typically stabilizes after 5 iterations,
regardless of the initial anomaly ratio in the training dataset.
These results highlight that the rate at which the anomaly
ratio decreases with Refine iterations can vary across different
datasets, likely due to differences in the characteristics of
healthy and anomalous samples. It is important to note that
after each iteration, we remove not only anomalous samples
but also inevitably some healthy samples from the training
dataset. While this increases the false alarm rate (proportion
of healthy samples incorrectly classified as anomalies), the
reduction in anomaly miss rate (proportion of anomalous sam-
ples incorrectly classified as healthy) is significantly greater,
leading to overall improvements in the F1-score. For example,
at an initial 1% contamination level (4,048 healthy and 46
anomalous samples), after three iterations, Refine reduces
anomalous samples to only 3 while retaining 3,673 healthy
samples, increasing the F1-score from 0.66 to 0.98. Similarly,
at a higher 10% initial contamination level (4,048 healthy and
404 anomalous samples), after 25 iterations, Refine removes
all anomalous samples while retaining approximately 2,400
healthy samples, again substantially improving the F1-score
despite this reduction.

We also analyze the precision and recall trends of Refine
across iterations. Figure 8, displays the macro average pre-
cision, which generally increases as iterations progress. For
lower initial anomaly ratios (e.g., 1% and 2%), the increase
in precision is sharper because the contamination is quickly
mitigated, leaving a cleaner training dataset. However, at
higher initial anomaly ratios, such as 10%, precision remains
stable for the first 10 iterations before starting to increase and
eventually reaching 85%. This stability can be attributed to
the iterative refinement process, where the model becomes
better at detecting anomalies (reducing false negatives) over
iterations. Since macro-average precision considers precision
for both classes equally, the improvement in anomaly detection



Fig. 10: Performance improvement in the contaminated Em-
pire dataset (Anomalous Subset 2) with Refine iterations.

outweighs the increasing false positive rate, leading to an
overall increase in precision.

In contrast, the recall trends in Figure 9 show different
dynamics. When the initial anomaly ratio in the training
dataset is higher (e.g., 10%), the recall increases consistently
as iterations progress. The consistent reduction in anomaly
miss rates outweighs the impact of the increasing false alarm
rates, as the healthy class is underrepresented in the test
dataset. For smaller initial anomaly ratios (e.g., 1%, 2%),
recall peaks within the first few iterations because anomalies
are quickly removed from the training dataset, leading to an
immediate improvement in anomaly detection performance
and a stabilization of recall in later iterations.

To validate our method with real-world production data
without synthetic anomalies, we collaborate with a plasma
physics expert at Sandia National Labs. The expert identifies
performance degradation in runs of the Empire application.
We execute this application multiple times on 4 compute nodes
with the same input parameters, observing that 7 jobs complete
in around 60 minutes (labeled as healthy) and 2 jobs take 50-
60% longer (labeled as anomalous). When we train the VAE
model with the 28 available healthy samples, it achieves 100%
accuracy in identifying the 8 anomalous jobs in the test dataset.
We have 2 anomalous jobs, one of which takes 90 minutes and
the other 97 minutes to complete. To simulate contamination,
we divide these jobs into two subsets: Anomalous Subset 1
(jobs that take 97 minutes) and Anomalous Subset 2 (jobs
that take 90 minutes), each containing 4 samples. We then
conduct experiments by adding these anomalous samples into
the training dataset, contaminating it, and testing the model
on the remaining anomalous samples. For instance, including
samples from Anomalous Subset 1 in the training dataset
maintains 100% accuracy. However, including samples from
Anomalous Subset 2 results in 0% accuracy, indicating that
these samples severely degrade the model’s performance. We
then apply Refine with multiple iterations to the contaminated
dataset that results in poor performance, aiming to improve the
model’s classification accuracy. Figure 10 shows that after two
iterations, Refine successfully removes all anomalous samples
from the training dataset, restoring the model’s performance
to 100% accuracy.

TABLE III: Summary of Execution Time for only one Refine
Iteration.

Statistic Initial Training (s) Train Until Knee Point (s) Retraining (s) Inference (s)
Mean 777.93 18.04 386.27 7.43
Std 37.34 2.94 27.55 0.19

TABLE IV: Summary of Execution for 25 Refine iterations.
Statistic Initial Training (s) Train Until Knee Point (s) Retraining (s) Inference (s)
Mean 14543.82 284.41 6962.93 179.92
Std 727.49 33.74 433.46 4.03

A. Execution Time Analysis

Execution time is crucial for assessing Refine’s practicality
in large-scale HPC environments, where efficient processing
of vast telemetry data with minimal overhead is essential
for real-world integration. While Refine’s iterative approach
involves multiple training and filtering stages, it does not
impose significant computational overhead. We summarize the
execution times for different stages of the Refine pipeline in
Tables III and IV, detailing both a single iteration and the
cumulative execution times after 25 iterations.

We conduct the experiments on a compute node equipped
with an Intel Xeon E5-2670 processor (16 cores, 2.6 GHz).
The pipeline includes four main stages: (1) the initial VAE
training stage, (2) training the VAE model up to the knee point
and identifying high-error samples, (3) retraining the VAE on
the filtered dataset after removing high-error samples, and (4)
inference on the test dataset. We report the execution times
averaged across 20 runs of the Refine framework. These runs
include four different initial anomaly ratios in the training
dataset (1%, 2%, 5%, and 10%) and use a 5-fold cross-
validation setup, as explained in the methodology section.
From Table III, we observe a mean execution time of 777.93
seconds for the initial VAE training, 18.04 seconds for training
up to the knee point and removing high-erorr samples from
the training dataset, 386.27 seconds for retraining, and 7.43
seconds for inference during a single iteration. The inference
time includes predictions for all 18,947 test samples. When we
evaluate 25 iterations (Table IV), we find that the cumulative
execution time does not increase linearly for training stages.
As iterations progress, we remove high-error samples, which
reduces the training dataset size and consequently decreases
the training and retraining times. Specifically, the total time
for initial training, training up to the knee point and retraining
exhibits a sub-linear growth due to this iterative refinement.
Inference time remains consistent across iterations, as it in-
volves evaluating the same number of test samples (18,947)
regardless of the training dataset size.

For comparison, Prodigy, executed on a compute node with
two 14-core Intel Xeon E5-2680v4 processors (2.4 GHz),
requires approximately 330 seconds for model training. In
contrast, a single full iteration of Refine averages around
1182 seconds. Although Refine’s iterative filtering introduces
additional computational overhead, this overhead remains ac-
ceptable within HPC environments, where job runtimes typ-
ically span hours or days. Furthermore, Refine achieves an



inference time of 7.43 seconds for 18,947 samples, compared
to Prodigy’s 3.28 seconds on the same dataset, indicating
that it remains suitable for real-time and batch anomaly
detection scenarios. Note that although we use 20 iterations
for performance evaluation in Figure 5, we report execution
times for 25 iterations here to provide a more exhaustive view
of cumulative overhead. Beyond 20 iterations, we observed
negligible additional gains indicating that 20–25 iterations are
practically sufficient in our scenario.

VII. CONCLUSION AND FUTURE WORK

In this work, we introduce Refine, a robust unsupervised
anomaly detection framework that enhances detection accu-
racy in contaminated datasets through an iterative filtering
process. Refine achieves a macro average F1-score exceeding
0.80, even with a 10% anomaly ratio in the training dataset,
significantly outperforming state-of-the-art methods in both
synthetic and real-world HPC datasets. Its iterative filtering
mechanism effectively removes anomalous samples from the
training dataset in an unsupervised manner, improving the
model’s robustness against contamination. Moreover, Refine
is ML model agnostic, allowing any reconstruction loss-
based method to adopt its iterative refinement strategy without
modifying the underlying model architecture.

Despite these achievements, several open challenges remain.
One key challenge involves determining the optimal stopping
point for the iterative process, particularly when ground-truth
labels for the test dataset are unavailable. Without this infor-
mation, deciding when to halt iterations becomes nontrivial,
as continued removal of samples risks excluding healthy data,
potentially increasing false alarm rates. Potential methods
to address this issue include monitoring the stabilization of
reconstruction error distributions, assessing convergence of
reconstruction error thresholds, or calculating the Wasserstein
distance [32] between reconstruction error distributions across
iterations. These metrics could serve as proxies for deter-
mining whether additional iterations would yield meaningful
improvements.

Future deployment of Refine in production HPC environ-
ments requires adaptability to evolving workloads, diverse
applications, and emerging anomaly patterns. To address these
dynamics, Refine must incorporate mechanisms for handling
previously unseen applications and user-specific workloads, as
well as for detecting novel anomaly types. Strategies such
as application-specific training and periodic retraining using
labeled telemetry data from nightly runs can enable Refine
to continuously update its model and detection thresholds,
ensuring its effectiveness over time.

Lastly, extending Refine’s applicability to a broader range of
real-world workloads, including GPU-accelerated applications,
is an important direction for future work. Conceptually, Re-
fine’s iterative filtering remains directly applicable once GPU-
specific telemetry metrics replace or complement existing
CPU-focused features. Additionally, exploring how varying the
size and architectural parameters of the VAE impacts detection
performance could further enhance Refine’s effectiveness and

generalizability. While our current evaluation includes real
anomalies from Empire applications, demonstrating Refine’s
effectiveness across diverse real-world scenarios and hetero-
geneous computing platforms will further validate its practical
robustness.
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