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Background and Motivation

\

* Significant growth in the scale of large-scale computing systems
* Applications share network, memory, I/O, and computing
resources

\. This sharing leads to unpredictable application performance /
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Problems caused by performance variations

Telemetry Data Collection

@ Melrcs
Storage |~

Telemetry Data
Sources

\ Glossary:

Metres

Network

Time

-

Memory

Matrics

Time

T-me

Node telemetry data
(Time x M metrics)

[

Node with
synthetic anomaly

Sample
(1 x N features)

)

Node without

synthetic anomaly

Supervised Framework Architecture

Feature extraction

Feature selection

oy Known healthy and Machine learning
- x s
— anomalous runs . o= e ot model training
_E healthy node\ (S ucz ~ ]
b 0 .Y -
©  |Appl > o O £
+ . = S —
@ Appl —> l feature
cC p-values
- — App2 — =
E f_,:J Benjamini-Yakutieli
O APPZ > o Procedure
anor;;alous node
| ¢
Monitoring of Feature Model False positive : :
; o : Diagnosis
O compute nodes extraction prediction filter
o
E Sosed > < 5 zﬁ. Node|labels
= Node 2 q &> 1|healthy
= = % 2 healthi
o’ Node 3 = \:’LE —>
4 o 4|healthy
Node 4 > | g
Overall pipeline for supervised anomaly diagnosis framework [2]
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Prodigy: Unsupervised anomaly detection framework architecture [I]
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/ Web-based Anomaly Diagnosis Framework\

* Framework Access: AI4HPC offers both supervised and
unsupervised anomaly detection frameworks in HPC
systems.

* User Interaction: Enables training on custom datasets or
application of pre-built models for analysis.

* Easy Setup: Docker integration for straightforward

\platform access and usage. /
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If the uploaded dataset has the exact same features as the
training dataset, we use the deployed model.
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/ Use Cases of Al4HPC \

* Automated Anomaly Diagnosis: Utilizes Al for automated
performance analysis, allowing users to upload and
analyze their own dataset.

* Accessible ML Tools: Easy web access to ML models for
analyzing HPC system data.

* User-Driven Enhancement: AI4HPC supports a feedback

loop for users to contribute to the ongoing improvement

\of ML diagnostics.
/ References \

[1] B.Aksar, E. Sencan, B. Schwaller, O.Aaziz,V. . Leung, ]. Brandt, B.
Kulis, M. Egele, and A. K. Coskun. Prodigy:Towards Unsupervised
Anomaly Detection in Production HPC Systems. The International

Conference on High Performance Computing, Network, Storage,

and Analysis (SC 2023), Nov. 2023
[2] O.Tuncer, E.Ates,Y. Zhang,A. Turk, |. Brandt,V. |. Leung, M. Egele,
and A. K. Coskun. Online Diagnosis of Performance Variation in

HPC Systems Using Machine Learning, in IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 30, no. 4, pp. 883-896,

wril 2019 /
@ﬁ:{zﬂiﬁal e PEACLAB
Laboratories SRvETa sy l I il I




