
Analysis of Power Consumption and
GPU Power Capping for MILC

Fatih Acun
Electrical and Computer Engineering

Boston University
Boston, USA
acun@bu.edu

Zhengji Zhao
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
zzhao@lbl.gov

Brian Austin
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
baustin@lbl.gov

Ayse K. Coskun
Electrical and Computer Engineering

Boston University
Boston, USA

acoskun@bu.edu

Nicholas J. Wright
Advanced Technologies Group (NERSC)
Lawrence Berkeley National Laboratory

Berkeley, USA
njwright@lbl.gov

Abstract—Power has been a key constraint for supercomputers,
and limitations on power become increasingly noticeable through
the exascale era. Limited power availability pushes the facilities
to operate under power constraints and develop power man-
agement methods, making it crucial to understand applications’
power consumption behavior and their performance under power
constraints. In this study, we examine the power consumption of
MILC, a widely used lattice quantum chromodynamics applica-
tion, on the Perlmutter GPU system at NERSC. We analyze the
power consumption of Generation and Spectrum applications of
MILC using varying parallel concurrencies and input sizes. We
then investigate the performance under GPU power caps and
show that MILC is well-suited for GPU power capping. Up to
50% of GPU’s TDP can be applied to MILC jobs with less than
15% of performance decrease.

Index Terms—Application power consumption, GPU power
capping, power management

I. INTRODUCTION

As high-performance computing (HPC) enters the exascale,
power has become a major limiting factor to continue to
advance in scientific computing. Many computing centers
investigate power usage of the production workloads to operate
their HPC systems efficiently under a prescribed power budget,
as highlighted in several recent analyses of the power use on
leadership-class supercomputers [1]–[3].

A major problem arising from the increased power con-
sumption of HPC systems is power oversubscription due to the
limitations of facility power infrastructures. Next-generation
systems are expected to surpass their predecessors in terms of
maximum power capacity, known as thermal design power
(TDP). However, it is not always feasible to scale up the
power infrastructure to match the system TDP, resulting in
oversubscribed systems bottlenecked by power [4]. Another
critical challenge for HPC systems is regulating their power
consumption to be grid-aware, helping Independent System
Operators manage the high stress on the grid. The emergency
demand response programs are previously used to interact

with HPC facilities in critical situations such as wildfires and
extreme weather events to request certain power cuts [5], [6].

Given the challenges of limited power availability that
HPC systems face, the need for effective power management
methods is becoming increasingly crucial. One of the most
important knobs to control the power is hardware power cap-
ping to regulate the power consumption of different hardware
components. To use power capping for production workloads,
it is essential to analyze the power consumption of applications
and their performance under power caps.

While our goal is to reduce application power consumption
to stay within a specified system power budget, we also aim
to minimize power fluctuations that can negatively impact
electrical grids and data center infrastructure. A recent analysis
of NERSC’s Perlmutter system [13] showed that 65% of the
system’s power variation is due to temporal variation in the
power used by individual jobs [2]. This underscores the need
for a detailed study of applications that utilize many nodes.

In this study, we provide a comprehensive analysis of power
consumption for MILC, the 2nd ranking workload [7] in terms
of node hours and can run with a large number of nodes, on the
Perlmutter GPU system [8] at NERSC. We analyze the power
consumption of MILC with different input sizes and parallel
concurrencies. We then extend our analysis to investigate the
effects of GPU power capping on MILC’s performance and
energy consumption to identify power management opportu-
nities. Our investigation shows that:

• The power usage of MILC has a strong dependence on the
changing input sizes and parallel concurrencies showing
up to 40% change in power use over GPU TDP.

• A power cap of up to half of the NVIDIA A100 GPU’s
TDP can be applied to MILC with less than 15% per-
formance penalty and up to 28% reduction in energy
consumption.

The rest of the paper continues with an overview of the
related work in Section II, the system configuration in Sec-



tion III. Section IV covers our power consumption analysis,
followed by our GPU power capping results in Section V.
Section VI concludes the paper.

II. RELATED WORK

Understanding the power consumption of HPC systems
requires a multi-tier process that includes cluster-level and
application-level analysis. Cluster-level analysis becomes crit-
ical for understanding the total power needs and developing
cluster-level power management methods. CPU-based systems
have been analyzed for their cluster, application, and user-
level power consumption [9]. Transitioning to the GPU-based
computer architectures elevated the power consumption by
HPC systems revealing different characteristics compared to
CPU-only systems such as their lower utilization of system
TDP [2].

Analyzing the application power consumption is crucial
for understanding power performance relationships and im-
plementing application-aware power management methods.
Power capping of CPU workloads has been explored over a
decade by analyzing the performance, and energy consump-
tion [10], [11]. Power capping for GPU workloads become
increasingly essential since computing power is now driven by
GPU workloads, especially after the latest surge in generative
AI. Power capping for AI workloads is explored by analyzing
their performance and underlining the advantage of power
capping on the reduced GPU temperatures [12]. Patel et
al. analyze LLM training and inference workloads, finding
that inference workloads use less peak power than training,
allowing for 30% more hardware utilization within the same
power budget through GPU power capping [13].

Our study thoroughly examines the power usage and vari-
ations of MILC, a key large-scale application. Combined
with a recent similar analysis of VASP [14], a leading HPC
application at many computing centers, we aim to establish
a robust foundation for implementing power management
strategies based on application power profiles.

III. SYSTEM CONFIGURATION

A. Perlmutter Supercomputer

We use Perlmutter at NERSC in this work. Perlmutter is an
HPE Cray EX supercomputer with 3,072 CPU-only and 1,792
GPU-accelerated nodes. Each GPU-accelerated node contains
one AMD EPYC 7763 “Milan” processor, 256 GB of DDR4
memory, four NVIDIA A100 “Ampere” GPUs, and four HPE
Slingshot “Cassini” NICs. 256 of the GPU-accelerated nodes
have 80 GB of High Bandwidth Memory (HBM), and 1,536
have 40 GB of HBM. This work uses only the 40 GB GPU-
accelerated nodes for consistency over multiple experiments.
Each of the GPU types has the same TDP of 400 W and the
TDP of a 40 GB GPU node is 2,350 W, including 280 W for
the CPU, 1600 W total for 4 GPUs, and 470 W for peripherals.
Perlmutter has a total system TDP of 6.9 MW, including all
the CPU and GPU nodes, service nodes, network routers, and
cooling distribution units.

B. Application Level Power Measurement in Perlmutter

NERSC uses Operations Monitoring and Notification Infras-
tructure (OMNI) [15] for monitoring operational data related
to power, performance, and other system metrics. Node-
level power data collection is enabled through Cray’s power
monitoring architecture, making it possible to read power
consumption by each component CPU, GPU, and memory.
To collect job-specific data on Perlmutter, power consumption
by the allocated nodes for the job is aggregated through
Lightweight Distributed Metric Service (LDMS) [16] with a
sampling rate of 1 HZ. We use the OMNI query scripts to
access the job-level GPU power consumption data [17].

C. MILC NERSC-10 Benchmark

MILC is a lattice QCD application that models the strong
interactions in subatomic physics with a discrete space-time
model. The workflow of MILC includes two different stages,
Generation and Spectrum. We refer to those stages as different
applications of MILC in this work. The Generation application
propagates the lattices until they sample an equilibrium distri-
bution and the Spectrum uses the generated lattice to calculate
the inversion of the staggered fermion matrix. The MILC code
is implemented in C and employs MPI for parallelization. It
uses the external QUDA library, which utilizes CUDA for
GPU compatibility.

The NERSC-10 benchmarks are developed to estimate per-
formance requirements for the next 5 years at NERSC based
on the widely used production workloads [18]. The NERSC-
10 benchmark for MILC provides a specific set of inputs and
representative use cases for MILC’s usage in production. In
this study, we focus on analyzing the NERSC-10 benchmark
for MILC.

IV. POWER CONSUMPTION ANALYSIS OF MILC

In this section, we present our analysis of power consump-
tion for Generation and Spectrum applications of MILC. Our
approach for power consumption analysis spans two aspects:
(1) temporal analysis of the application power consumption
to understand time-varying characteristics (e.g., fluctuations,
periodicity), (2) distribution analysis to identify where the
power data is concentrated.

We execute Generation and Spectrum application bench-
marks with four inputs of varying sizes and three different
parallel concurrencies for each input to capture the changing
power behaviors for different configurations. Table I shows our
experiment configurations. We repeat the run for each config-
uration three times to generate power data and use the one
with the shortest execution time when reporting performance.
To provide insight into power and energy consumption results
in Section V, we present the parallel efficiency results upfront
in Figure 1, which are calculated relative to the experiments
with the smallest node allocation for each input category. In
general, a parallel efficiency of 70% and up is considered a
good use of computing resources.



TABLE I
EXPERIMENT CONFIGURATIONS FOR MILC GENERATION AND SPECTRUM

Input Lattice Size Number of Nodes
tiny 483 × 64 1, 2, 4

small 643 × 96 2, 4, 8
medium 963 × 192 16, 32, 64
reference 1443 × 288 64, 128, 256
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Fig. 1. Parallel efficiency results. The horizontal dashed line represents
the 70% threshold for recommended parallel efficiency. Parallel efficiency is
calculated as S/N , where S is the speedup achieved when using N processors.

A. Temporal Analysis of Power Consumption

In this section, we analyze the power consumption timelines
for the application executions. Figure 2 shows the timelines
of GPU, CPU, memory, and node power for Generation and
Spectrum executions with tiny input on one node. By inves-
tigating timelines for all experiment configurations, we see
similar behavior exists among our experiments with different
input sizes and parallel concurrencies and provide these as
representative examples.

We observe low power consumption periods, around 500 W
node power corresponding to 20% of the node TDP, at the
beginning and the end of each application. By profiling the
application runs, we identify that low power periods refer to
I/O operations for loading the input and writing the output.
For the core calculation phases that start approximately after
the first 15 seconds, node power reaches 1500-1600 W driven
by the increase in the GPU power. For Generation, we observe
a fluctuating behavior on node power, between 1650 W and
1250 W, that repeats approximately within 15 seconds. Profil-
ing results show that those power drops correspond to CUDA
memory operations and file writes. Due to these power drops,
Generation jobs with large node allocations can cause cluster-
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Fig. 2. Timeline of power consumption for Generation and Spectrum
applications with tiny input executed on 1 node. The GPU timeline represents
the total combined power consumption of all four GPUs within the node.

level power fluctuations. Spectrum applications demonstrate a
steady power consumption at around 1600 W node power in
the core calculation phase. For both applications, we see the
total GPU power consumption by the four GPUs within the
node partakes the most significant portion of the node power.
Therefore, we focus on the GPU power consumption for the
rest of our analysis.

B. GPU Power Distributions

A comprehensive analysis of GPU power distribution is
essential for identifying key characteristics to see where the
power data is located over the GPU power domain. We provide
the GPU power distributions for all experiments with violin
plots in Figure 3. We show the number of nodes used on the
x-axis, and per GPU power on the y-axis, and use colors to
represent different input sizes. The violins show the Kernel
Density Estimation (KDE) of each distribution. We show the
power value with the highest density with a diamond inside
each violin to explicitly indicate the mode of the power
distribution for the core phase execution (high power region)
and refer to it as ‘high power mode’ for the rest of this paper.

In Figure 3, we see the power distributions show multi-
modal characteristics for each experiment configuration, point-
ing out the I/O operations for lower power regions and power-
intensive calculations for high power regions. In addition,
we see a decreasing trend for the GPU power distributions
and their corresponding modes with the increased number of
nodes within each input size, as expected due to decreased
computation intensity per GPU.

Another significant takeaway from the power distributions
is that power consumption does not reach the GPU TDP of
400 W. We observe that high power modes for all experiments
are always below 320 W, which corresponds to 80% of the
GPU TDP. This observation is useful for power provisioning
to inform the power management methods to expect the per
GPU power for MILC applications to be less likely to exceed
350 W.
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Fig. 3. GPU power distribution for all experiments with Generation and
Spectrum applications. The horizontal dashed lines show the GPU TDP. The
diamonds in each violin show the high power mode value for each distribution.

V. GPU POWER CAPPING FOR MILC

Hardware power capping has various system-level and
application-level impacts. Power capping affects application
performance depending on the restrictiveness of the power
budget and the application’s sensitivity to power limits. How-
ever, there are multiple advantages such as improved energy
and power efficiency and lower hardware temperatures [12].

In this section, we analyze the impact of power capping on
the power and energy consumption of MILC. We also examine
the performance trade-offs associated with different power
capping levels. We use the NVIDIA System Management
Interface tool (nvidia-smi) [19] to apply various power caps
to GPUs using its -pl option. Nvidia-smi’s -pl option requires
root privilege. NERSC implemented a local Slum plugin that
allows end users to apply power limits using an sbatch flag,
--power-limit, conveniently.

A. Power Usage Under Capping

The permissible range for power capping on A100 40 GB
GPUs is 100 W to 400 W, with 400 W being the default setting
on Perlmutter. Our experiments on power capping tested values
of 400 W, 300 W, 250 W, 200 W, and 150 W.

Figure 4 shows the high power mode per GPU under each
applied power cap at various node counts for Generation (top)
and Spectrum (bottom). One can see the power requirements
for these runs at the 400 W power limit. The efficacy of
the power capping is evident, as shown in the figure that all
measured power values are below their respective power caps.
Figure 5 shows the power usage timeline for a Generation run
with two nodes with and without 200 W power cap, sampled
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Fig. 4. High power modes per GPU under GPU power caps.

among these runs. As noted in Section IV-A, those drops of
the power timeline correspond to the memory operations in
Generation, which are not affected by the applied power cap
because their required power is below the applied cap 200 W
(as shown in the GPU power timelines in Figure 5). Con-
sequently, the troughs of the power timeline stay unchanged
while the peaks in the power timeline are capped below the
set limit. As a result, power capping not only reduces overall
power consumption but also smooths out power variations.

B. Performance Under Power Capping

In this section, we analyze the performance of MILC
applications and present our insights for performance-aware
power caps. Figure 6 shows the performance sensitivities
of applications for power caps relative to their uncapped
execution times. Our takeaways for performance sensitivities
under power caps are as follows:
Power Caps Above 250 W: For power caps 250 W or above,
the performance slowdowns are considerably minor, rarely
reaching up to 10%. Our power consumption distribution anal-
ysis in Figure 3 shows a significant portion of the application
executions are not reaching 250 W and not getting affected by

Fig. 5. Effect of GPU power capping on MILC Generation. The power usage
timeline for node and GPU 0, with and without a 200 W power cap, is shown
on the vertical axis. Power timeline data is averaged over 2-second intervals.
The experiment used the small input of Generation running on two nodes.



the power cap. Even for those applications with GPU power
distributions exceeding 250 W (e.g., tiny and small inputs up
to 4 nodes), it is possible to reduce the power consumption
using a 250 W power cap with a minimal performance penalty.
Significant Performance Slowdown at 150 W: There is
a significant performance slowdown at 150 W. While the
performance impacts are relatively small at 200 W, power caps
result in significant slowdowns up to 85% at 150 W.
Scaling up with Fixed Problem Size: Since per-GPU power
consumption decreases with increased concurrency for a given
input size, applications running with higher concurrency ex-
perience less performance loss under power caps than those
with fewer nodes. These runs are indicated by green lines in
Figure 6.

C. Energy Consumption Under Power Capping

Energy consumption is a crucial metric to analyze under
power caps along with power and performance. We present
the total GPU energy consumption by applications in Figure 7.
Our insights for energy consumption are as follows:
Scaling up with Fixed Problem Size: In each input size for
Generation and Spectrum, runs with the largest node alloca-
tions (shown in green lines in Figure 7) have the highest energy
consumption due to their low parallel efficiency as presented
in Figure 1. However, it is possible to save substantial amounts
of energy up to 23% with a 150 W power cap since large runs
of each input exhibit the least performance slowdowns.
Increased Energy at 150 W: We see the most significant
reductions in energy consumption up to 28% with a 200 W
power cap. Applying a 150 W power cap, especially for the
runs with fewer nodes (e.g., less than 4 nodes) increases the
energy consumption compared to a 200 W power cap. As
discussed in the performance analysis, a 150 W power cap
leads to significant slowdowns, which in turn result in higher
energy consumption due to longer execution times.

VI. DISCUSSION

In this study, we present a comprehensive analysis of the
power consumption and GPU power capping for MILC using
various input sizes and parallel concurrencies. Our investiga-
tion shows that applying a power cap of up to 50% of the
A100 GPU’s TDP to MILC jobs results in less than 15%
performance penalty. Parallel to our work, a deep-dive study
on VASP revealed quite different power characteristics but also
showed that up to 50% of A100 GPU’s TDP can be applied
to most VASP workloads with less than 10% performance
loss [14]. These findings can be used in the power-aware
scheduler to regulate the power consumption of a significant
portion of the Perlmutter system. Moving forward, we plan
to build a comprehensive power prediction model for MILC
based on our study to deploy in power-aware scheduling along
with VASP and other prominent applications on Perlmutter.
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Fig. 6. Power sensitivity for the performance of Generation and Spectrum applications with different input sizes and parallel concurrencies. Execution time
is measured relative to the uncapped time at 400 W.
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Fig. 7. Total GPU energy consumption for Generation and Spectrum applications with different input sizes and parallel concurrencies.


