MODULE 3: Basic Circuits

BU SUMMER CHALLENGE Electrical Engineering: Smart Lighting Project

Beste Oztop
PhD Student
Boston University
boztop@bu.edu

Overview

- Circuits Review
- Resistance and Resistors
- Ohm's Law
- Breadboards
- Capacitance
- Experiments
 - Resistive Circuit
 - Voltage Divider
 - RC Circuit

Recap - What is a Circuit?

- In a circuit, how are the start and end related?
 - They're the same!
- What happens if there isn't a continuous path?
 - Open Circuit No flow of charge (or electrons)
- What happens when a conduit connects two points?
 - Charge (and electrons) can flow between the points
 - Short Circuit Directly connecting two points of different voltage
- Switch
 - Device that can open or close a circuit

Resistance

- As charge flows from high to low V, energy is released
 - Where does it go??
- As electrons flow, they encounter resistance
 - Generate heat as a result of this opposition
 - Resistance is a function of material, length, and cross-sectional area
 - Resistance is measured in Ohms [Ω]
- Wires have resistance, but it is minimal and a direct connection between
 - different voltage levels is a short
 - The filament in an incandescent light introduces resistance
 - The heat energy causes the filament to "glow" white-hot and produce light

Resistors

Ohm's Law

What happens in the case of an open circuit (i.e., $R \approx \infty$)? What happens in the case of a short circuit (i.e., $R \approx 0$)?

Series vs Parallel

Series Resistance

$$V_0 = V_1 + V_2 = IR_1 + IR_2$$

= $I(R_1 + R_2)$
= IR_s
 $R_s = R_1 + R_2$

Parallel Resistance $I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{V}{R_p}$

Breadboards

- Why do we use breadboards?
 - Temporary Circuits
 - Prototyping
 - No Soldering

Anatomy of a Breadboard

Schematics and Breadboards

Connect nodes of a schematic to a connected row of the breadboard

Schematics and Breadboards

Connect nodes of a schematic to a connected row of the breadboard

RESISTOR

SHORT EXERCISE

- 1. Copy the schematic.
- 2. Label where each of the numbers are.

Voltage Divider Circuit

Also
$$V_1 = \frac{R_1}{(R_1 + R_2)} V_0$$
 $V_2 = \frac{R_2}{(R_1 + R_2)} V_0$

$$I = \frac{V_0}{R_s} = \frac{V_0}{R_1 + R_2}$$

$$V_2 = IR_2 = \frac{V_0}{\left(R_1 + R_2\right)}R_2$$

$$V_2 = \frac{R_2}{(R_1 + R_2)} V_0$$

Experiment I

- Go to "Lab Module 3: Basic Circuits" in your experiment manual
- Voltage Divider
- Resistive Circuits

- ★ Reflect on what you learned so far!
 - References:
 - http://www.physicsclassroom.com/
 - http://www.allaboutcircuits.com/

Overview

- Recap
 - Resistance and Resistors
 - Ohm's Law
 - Breadboards
- Capacitance
- Experiments
 - Resistive Circuit
 - Voltage Divider
 - RC Circuit

Resistors

Ohm's Law

- Ohm's Law: Voltage across a resistor is directly proportional to the current flowing through it.
- The proportionality constant is the resistance!

Series vs Parallel

Series Resistance

$$V_{0} = V_{1} + V_{2} = IR_{1} + IR_{2}$$

$$= I(R_{1} + R_{2})$$

$$= IR_{s}$$

$$R_{s} = R_{1} + R_{2}$$

■ Parallel Resistance $I = I_1 + I_2 = \frac{V}{R_1} + \frac{V}{R_2} = V \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{V}{R_1}$

$$R_{p} = \frac{1}{R_{p}} + \frac{1}{R_{p}} \implies R_{p} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \implies R_{p} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

Breadboards

- Why do we use breadboards?
 - Temporary Circuits
 - Prototyping
 - No Soldering

Voltage Divider Circuit

Also
$$V_1 = \frac{R_1}{(R_1 + R_2)} V_0$$
 $V_2 = \frac{R_2}{(R_1 + R_2)} V_0$

$$I = \frac{V_0}{R_s} = \frac{V_0}{R_1 + R_2}$$

$$V_2 = IR_2 = \frac{V_0}{(R_1 + R_2)}R_2$$

$$V_2 = \frac{R_2}{(R_1 + R_2)} V_0$$

Capacitors

- A capacitor has capacity to store energy in the form of electrical charge producing a voltage across plates
- Storage of energy is time dependent
 - This was NOT the case in purely resistive circuits.
- Capacitance is measured in Farads [F]

$$i = C \frac{dV}{dt}$$
 $i = Instantaneous Current$ $\frac{dV}{dt} = Instantaneous rate of voltage change$

$$C = \frac{\varepsilon A}{d}$$

$$\varepsilon = \text{dielectic constant}$$

$$A = \text{Area of plate overlap}$$

$$d = \text{distance between plates}$$

Capacitors are sometimes polarized.

NOTE: Directly connecting a capacitor to a voltage supply is not practical.

Capacitors

- The charge on a capacitor cannot change instantaneously
- The charge on the plates of the capacitor is given as Q = CV
- The current flowing into a capacitor after a long time interval (i.e., steady-state) is zero
 - Charge contained in the capacitor instead of flowing through the circuit

RC Circuits

- RC circuits consist of a resistor and capacitor in series
- A capacitor stores energy and a resistor placed in series with it controls the rate at which it charges or discharges.

RC Circuits

Charge

Boston University School of Engineering

Experiment II

Resistor – Capacitor (RC) Circuits

BOSTON