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medical data and can be costly to train _ _
as one exam can contain multiple ECG anomaly types

and maintain in a resource limited
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Conclusions

Overall: Our model exhibited poorer performance compared to the DL-baseline model

Potential Explanation: Only 15% of the ECG data used for training the DL-baseline model was
publicly available

Thoughts:

e Existing model would not be able to be implemented in real-world situations as the model only
correctly identifies 49% to 88% of anomalies

e Potentially fatal misdiagnosis
e Proof of concept — if improved, similar models could be utilized in the future

o Tree-based classifiers can be faster and less resource intensive compared to DL-models
Future Steps:
e [rain the model with more data
e Experiment with other feature selection techniques + ML model types
e Experiment with hyperparameter tuning
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