
Site-Wide HPC Data Center Demand Response
Daniel C. Wilson
Boston University

Boston, USA
danielcw@bu.edu

Ioannis Ch. Paschalidis
Boston University

Boston, USA
yannisp@bu.edu

Ayse K. Coskun
Boston University

Boston, USA
acoskun@bu.edu

Abstract—As many electricity markets are trending towards
greater renewable energy generation, there will be an increased
need for electrical grids to cooperatively balance electricity
supply and demand. Data centers are one large consumer of
electricity on a global scale, and they are well-suited to act as a
grid load stabilizer via performing “demand response.”

Prior investigations in this space have demonstrated how data
centers can continue to meet their users’ quality of service (QoS)
needs by modeling relationships between cluster job queues,
server power properties, and application performance. While
server power is a major factor in data center power consumption,
other components such as cooling systems contribute a non-
negligible amount of electricity demand.

This work proposes using a simple site-wide (i.e., including
all components of the data center) power model on top of QoS-
aware demand response solutions to achieve the QoS benefits of
those solutions while improving the cost-saving opportunities in
demand response. We demonstrate 1.3x cost savings compared
to QoS-aware demand response policies that do not utilize site-
wide power models, and show similar savings in cases of severely
under-predicted site-wide power consumption if 1.5x relaxed QoS
constraints are allowed.

Index Terms—HPC, Demand Response, Power Usage Effi-
ciency, Quality of Service

I. INTRODUCTION

Electricity markets are trending toward supply mixes with
increasing proportions of renewable energy sources. Most
states in the U.S. have adopted renewable portfolio standards
to increase their renewable energy generation, and 12 states
have put plans into action to achieve 100% clean energy
within the next 30 years [1]. The U.S. Energy Information
Administration forecasts that 70% of the renewable energy
supply will consist of solar and wind power in that time
frame [2]. Solar and wind power supplies have time-varying
availability, so there is a growing need for power management
solutions that adaptively balance supply and demand.

Regulation service programs are one solution to manage
imbalances between electricity supply and demand. In such
programs, an electricity consumer offers regulation capacity
to an independent service operator (ISO) in the grid. The
offered service is a promise that the consumer will modulate
power consumption to help the ISO balance electricity supply
and demand. The consumer receives cost incentives depending
on constraints specified by the ISO. For example, the PJM
ISO has a program that pays for regulation service based
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on changes in hourly rates, on the magnitude of reserve
offered by a consumer, and on the consumer’s quick and
accurate response to the ISO’s requests for power consumption
modulation [3]. In this work, we refer to a bid as the amount
of average purchased power for an upcoming hour, and the
reserve capacity offered for that hour.

Data centers are well-suited to offer regulation service
because they consume a lot of electricity and they can quickly
modulate their power consumption through job scheduling
and server-level power management. An ACM tech brief
estimates that data centers consumed 3% of the total energy
supply in 2021, and are likely to demand more as power-
hungry cryptocurrency and artificial intelligence workloads
increase in popularity [4]. Prior works have demonstrated that
data centers can effectively manage trade-offs between power
consumption and application performance to meet system-
wide power objectives [5], [6].

Previous work toward using data centers as reserve capacity
in a smart grid has focused on enhancing trade-offs between
quality-of-service (QoS) and server power consumption, such
as by co-optimization of battery-based and server-workload-
based power reserves [6], offering probabilistic guarantees
on QoS degradation [7], and enhanced bidding strategies to
exploit properties of long-running workload mixes observed
in real-world data centers [8].

There is currently a gap in efforts to design QoS-aware
demand response policies that operate at the site level (i.e.,
including all components of the data center). Beyond server
power in a data center, cooling and power delivery infrastruc-
ture contribute toward significant additional power demand.
In a 2021 survey, large data centers used on average over a
third of their power consumption for non-server needs [9].
While prior work proposes methods to co-optimize frequency
control and cooling system parameters [10], there isn’t a
single solution that integrates QoS-aware decisions along the
entire path of bidding, job scheduling, and site-scoped power
management. This paper aims to close the research gap by
evaluating the opportunity to use site-level power consumption
in demand response power management policies.

The key contributions in this work are as follows:
• We demonstrate that site-wide demand response partic-

ipation in a data center enables lower operating costs
than server-only demand response participation while
using an existing QoS-aware demand response policy. We
achieve 1.3x cost savings with similar QoS degradation



by making demand response policies aware of site-wide
power consumption.

• We analyze the sensitivity of demand response cost
savings to site-wide power model selection. In scenarios
where there is low confidence in the site-wide power
model, demand response policies can still reduce elec-
tricity costs, but may need to relax their QoS constraints.

• We show that batch job resource managers meet site-level
demand response objectives and job-level QoS objectives
by using a simple site power model on top of QoS-aware
power managers that operate with job and server scope.

The remaining sections of this paper discuss related works
for data centers in demand response, describe our simulation
infrastructure, explain our experimental methodology, and
evaluate our simulation results.

II. RELATED WORK

There is broad interest in reducing the carbon impact and
cost impact of data centers while maintaining quality of
service. A survey of energy-aware Top500 supercomputing
sites indicates that facilities are interested in job scheduling,
resource management, and facility design strategies to meet
their high-level power objectives [11]. Another survey reveals
that a lack of QoS guarantees is a strong reason that some data
centers do not consider demand response in their electricity
procurement strategies [12].

Existing works about demand response in data centers
often investigate QoS awareness without pursuing site-level
power awareness. The Adaptive policy with Quality Assur-
ance (AQA) [7] operates on server-level power metrics and
controls to enable QoS-aware bidding and power management
in demand response in HPC environments. The ECOGreen
policy [6] focuses on QoS awareness in virtualized computing
environments, and includes on-site power storage as a control.

Other work [10] explores site-level monitoring and control
to meet target power levels in demand response programs.
While that work does include QoS estimates as part of the
bidding strategy, it does not include end-to-end QoS feedback
from bidding through scheduling and power management.

Some efforts work toward sharing work across data centers
to help balance electricity supply. For example, the Zero-
Carbon Cloud project [13] relocates virtual computing work-
loads so that computing power demand can follow changing
supply. That type of solution offers high capacity to match
changing power supply, particularly when many small data
centers are distributed near different energy supplies. However,
that type of approach is not suitable for workloads that are
expected to operate within a single HPC data center.

Our work augments cluster-level, QoS-aware demand re-
sponse policies with a simple site-level power model to enable
site-wide demand response participation of HPC sites.

III. SITE-WIDE DEMAND RESPONSE

Our high level goal is to identify the cost-saving oppor-
tunities of demand response bidding and power management
policies in an HPC data center, while meeting QoS constraints
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Fig. 1. The simulator places control logic in an orchestrator that schedules
work and applies power limits to servers to satisfy user and independent
service operator objectives.

of jobs in a work queue. This section describes the data center
simulator and the demand response policies we use to analyze
our cost-saving opportunities.

A. Data Center Simulator

To evaluate the quality of demand response policies, we
simulate a data center’s work queues, power consumption
across the data center, performance of running applications,
and incoming regulation service control signals. As shown in
Fig. 1, simulation logic resides in a central orchestrator, which
acts as the data center’s job scheduler and resource manager.

The overall execution flow of the simulator begins by
loading application and data center properties, then executing
the bidding policy, and lastly performing fixed-time-interval
simulations of servers, the regulation signal, and the demand
response policies for scheduling and power management.

For each one-second time step simulating data center
servers, the simulator updates its queue of incoming job
requests from users and reads the regulation signal from the in-
dependent service operator. The simulator updates the cluster-
level view of server power consumption prior to executing
scheduling policies and power-capping policies, which update
control signals on the simulated servers.

Job submissions are randomly generated for each simula-
tion, as a Poisson process for each job type. The average arrival
rate of each job type is selected to evenly distribute a target
data center utilization across all job types in a workload mix.

B. Demand Response Policy

We simulate the AQA policy [7] for demand response
control decisions. In this work, we update the policy to make
it aware of site-wide power consumption. We use a site-
wide power model to inform the policy how much server
power needs to increase or decrease to meet the site-wide
power target, and the policy makes its QoS and server-power-
aware control decisions in the same manner as described in
its original work. This design choice ensures that existing
policies can make site-level power control decisions by using
a simple model of site-wide power consumption. We refer to
the updated site-wide AQA policy as AQA-SW in this paper.

The AQA algorithm applies weights to individual job types
in a workload mix. Those weights are used to influence
which queued jobs get sent to servers, as well as how the
power budget is distributed across active servers. Weights
and bids are learned prior to evaluating each workload mix
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Fig. 2. PUE of the MGHPCC data center as a function of outdoor wet bulb
temperature.

by running many simulations of a workload mix through a
gradient descent search [7].

In this work, we use the same search used by AQA,
but we run the AQA-SW policy in each gradient descent
step. The search incorporates electricity cost, QoS constraints,
and power-tracking constraints in the gradient descent cost
function. Some search steps occasionally enter regions of
violated constraints, then adjust in later steps to find viable
bids and weights. We stop searching after 120 iterations of
gradient descent, prune non-viable search steps, and select the
bid and weights with the lowest cost.

C. Site Power Model

The simulator estimates power consumption at the site level
by using a power usage efficiency (PUE) model. PUE is
defined as PUE = Total Power

IT Power , so our simulator estimates total
power as the product of the modeled PUE and the sum of
power consumption across servers.

For this work, we construct a piecewise-linear model of
PUE as a function of outdoor wet-bulb temperature, where
hotter and more humid days will place a greater cooling load
on the data center for a given computational workload. The
PUE model is used with the definition of PUE = Total Power

IT Power to
translate between IT, non-IT, and total power where needed
by the simulator. The model of PUE as a function of wet bulb
temperature is:

PUE(x) =
{

A(x−B) + C x < B
D(x−B) + C x ≥ B

The model’s parameters are fit with least squares regression
against power and wet bulb temperature data provided by the
Massachusetts Green High Performance Computing Center
(MGHPCC) [14]. The MGHPCC is a megawatt-scale com-
puting center with hundreds of thousands of CPU cores and
millions of GPU cores. We use data from 2018 to 2020, shown
in Fig. 2. To work with the available data, we approximate
PUE as the ratio of the data center’s power consumption to the
power consumed by all computing racks in the center clusters.
The resulting model parameters are A = 5×10−12, B = 42.1,
C = 1.16, and D = 5.5× 10−3.

The model predicts the source data’s PUE with 1.1% mean
absolute error. We do not focus on developing a robust

model in this work. Instead, we evaluate how server-only
demand response policies meet their QoS objectives when
they are augmented with a simple model to enable site-wide
power awareness. We evaluate sensitivity to modeling error in
Section V.

Power consumption of simulated servers follows a simple
model based on activity. If no workload is executing on the
server, the server is assumed to consume its idle power. Idle
power is assumed to be 169 watts in our experiments as
measured in previous experiments on a subset of servers in
that cluster [7]. If a workload is executing on the server, then it
is assumed to consume the lesser of the server’s current power
limit (as set by the orchestrator) and the current workload’s
maximum power consumption.

IV. METHODOLOGY

Our experiment plan consists of two stages. First, we eval-
uate the cost savings of a site-wide demand response policy
in comparison to the savings from a server-power-only policy.
Second, we evaluate the sensitivity of those cost savings with
respect to the choice of site-wide power consumption model.

Both the cost-savings evaluation and the sensitivity analysis
are performed over a range of simulated external wet bulb tem-
peratures from 40◦F to 70◦F, in order to exercise data center
efficiency levels between the corner cases of observations from
the PUE model described in Section III-A.

The properties of our simulated data center are based on
sampled data from real servers in the MGHPCC. As described
in Section III-C, our site-wide power model is fit against
site power data. The execution times and power trends of
our simulated applications are sampled from application runs
on Boston University’s Shared Computing Cluster, which is
hosted in the MGHPCC.

We select several workloads from the workload mixes in
the work that introduced the AQA policy [7]. The selected
workloads and their compositions of applications are shown in
Table I. We pick workloads that exhibit mixed properties (W1),
as well as corner cases such as low power (W8), high power
(W9), low utilization (W12), and high utilization (W13).

A. Cost Savings

Our goal in the cost-savings experiments is to evaluate
the cost opportunities that are offered by using site-wide
demand response instead of server-only demand response in
an HPC data center. We simulate the AQA policy for server-
only demand response and the AQA-SW policy for side-wide
demand response (both described in Section III-B).

1) Cost Model: We model the total cost of electricity as
the estimated cost of an energy purchase, minus the value of
the regulation service provided by the data center. Specifically,
we model the hourly cost as

Cost = ΠP P̄ −ΠRR+ΠϵRϵ,

where ΠP P̄ indicates the cost of energy purchased for the
hour, ΠRR represents the value of reserve capacity offered
for the hour, and ΠϵRϵ is the cost penalty for ϵ percent error



TABLE I
MEMBERSHIP OF APPLICATIONS WITHIN WORKLOAD MIXES. EACH APPLICATION FOLLOWS A PATTERN OF <NAME>.<INPUT CLASS>.<PROCESS
COUNT>. THE mj COLUMN SHOWS THE NUMBER OF SERVERS USED PER JOB. Tmin (Tmax) IS THE MINIMUM (MAXIMUM) PROCESSING TIME IN

SECONDS, AND pmax (pmin) IS THE CORRESPONDING POWER CONSUMPTION OF A SERVER IN WATTS. Qthres IS THE THRESHOLD FOR EACH
WORKLOAD MIX’S ACCEPTABLE LEVEL OF QOS DEGRADATION.

App mj Tmin pmax Tmax pmin Qthres W1 W8 W9 W12 W13
bt.C.16 1 73 339 86 249 2.5 ✓
mg.D.16 1 84 380 105 266 2.8 ✓
sp.C.16 1 54 375 62 267 7.1 ✓
is.D.32 3 42 249 42 241 5.6 ✓ ✓ ✓ ✓
bt.C.36 2 38 343 46 249 3.1 ✓ ✓
bt.D.49 2 551 391 729 250 5.6 ✓ ✓ ✓ ✓
ep.D.64 3 54 353 70 237 3.9 ✓
sp.D.100 4 343 399 381 264 3.3 ✓
ep.D.28 1 124 383 175 238 5.9 ✓
cg.C.4 1 28 238 28 239 4.0 ✓
bt.D.25 1 1022 402 1370 254 3.2 ✓
mg.D.8 1 141 297 151 258 2.9 ✓ ✓ ✓ ✓
is.D.4 1 122 204 123 194 7.3 ✓ ✓ ✓
cg.D.16 1 743 326 823 253 7.3 ✓
ep.D.56 2 64 383 90 238 2.0
cg.D.128 6 231 336 242 246 4.0 ✓
cg.D.32 3 364 281 390 246 5.5 ✓
ep.D.100 4 36 366 49 238 4.5 ✓ ✓ ✓
is.D.64 4 27 287 28 228 3.1 ✓ ✓
lu.D.112 4 164 405 222 251 4.1 ✓ ✓ ✓
mg.D.32 2 49 378 58 266 5.0 ✓ ✓ ✓ ✓

in tracking the regulation signal. While this cost model is in
line with prior work on data center demand response [7], the
key difference is that we calculate the cost using site-wide
power consumption.

2) Sources of Cost Savings: The site-wide demand response
policy accounts for all the site’s power in the above cost model.
The average purchased power of the AQA and AQA-SW
policies is derived from the total power consumed by the site.
Note that although the cost equations appear the same across
AQA and AQA-SW cases, the actual cost differs because the
magnitude of R increases in the site-wide policy, since it is
derived from both server and non-server power in that case.

As a baseline, we estimate non-demand-response cost based
on the total energy consumed, times the cost per kilowatt-
hour of energy. As a result, the baseline cost does not directly
depend on the P̄ and R cost components describe above, but
the baseline cost does depend on the scheduling and power
management decisions made in the data center.

B. Sensitivity Analysis

We analyze the demand response policy’s sensitivity to the
choice of site-wide power model. The purpose of this analysis
is to identify how well the policies respond when the selected
model has prediction errors.

Our simulated actual PUE measurements at each tempera-
ture step come from a data set provided by the MGHPCC.
We aggregate samples of PUE measurements by 5◦F bins
of wet bulb temperature, selecting the 5th percentile, median,
and 95th percentile PUE measurements from each group. We
run simulations of the data center where the bidding policies
are not aware of the actual PUE. As a result, the P̄ and R
bids are unable to reflect the resulting increase or decrease to
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Fig. 3. Cost of demand response (DR) policies with and without site-wide
awareness, compared to the cost of electricity purchase policies that do not
participate in demand response programs, averaged across 3 simulations of
the workload mixes described in Section IV. Shaded regions indicate the 95%
confidence interval.

power consumption, so all adjustments to the incorrect site-
wide power estimate must be managed through scheduling and
power capping. This evaluation emulates the range of power
prediction error that may occur if the data center operates at
different efficiency shortly after placing a bid (e.g., due to
cooling system changes or weather forecast error).

V. EVALUATION

In this section, we evaluate the results from our experiments
in cost-saving opportunities under an ideal site-wide power
model, as well as our experiments in the effects that site-wide
power prediction errors have on a demand response policy.

A. Cost Savings

Fig. 3 shows the simulated costs of demand response
policies with and without site-wide power models, compared
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Fig. 4. Sensitivity of worst-case QoS, regulation signal tracking error, and cost savings as a response to corner cases of PUE modeling error. Shaded regions
indicate the 95% confidence region across 3 trials of simulation over 4 temperature points and 5 workload mixes. Cost savings are relative to the cost of
electricity without demand response. Worst QoS is the worst QoS degradation (relative to target QoS) across job types. Mean tracking error is the mean
absolute error of the data center’s actual power, with respect to the time-changing power target specified by the independent service operator.

with the costs of electricity-purchasing policies that do not take
advantage of demand response programs. Regardless of the
presence of demand response participation, costs trend upward
with the simulated wet bulb temperature. That trend exists
because more electricity is needed for non-server components,
such as site-wide cooling systems, when outside temperature
is higher.

The cost-saving opportunities of the site-wide demand
response policies consistently outperform the opportunities
of the server-only demand response policies. The average
improvement is 1.3x savings in the site-wide policies, relative
to the savings in the server-only policies.

B. Sensitivity Analysis

We first evaluate the high-level trends in our cost and
performance metrics when there is an error in side-wide power
consumption estimation. Next, we look at the properties of the
worst-performing scenario underneath those trends.

1) High-Level Trends: Fig. 4 shows the sensitivity of our
demand response cost and performance metrics, as the AQA
policy over-predicts or under-predicts the site-wide power
consumption. Low PUE percentiles indicate scenarios where
the PUE is less than the typical PUE values that are used in
the site-wide power model, so they indicate cases where the
bidding policy is likely to bid higher than its needed power.
Similarly, the higher PUE percentiles indicate scenarios where
the bidding policy is likely to bid lower than its needed power.

As the site’s actual power consumption trends from over-
bidding to under-bidding scenarios, the QoS of the worst-
performing job increases in both mean and in variance. Both
of these trends occur because it is easier to let jobs run at full
speed when there is a larger power budget.

Although over-bidding scenarios meet QoS needs more
easily, they do increase the upper range of requested power
targets from the independent service operator will not be easily
achievable in the data center. Because over-bidding cases are
more difficult to achieve all requested power targets, we see
that lower PUE percentiles cause greater tracking error in the
demand response power management policy.

These experiments cover the case where P̄ and R selection
are based on incorrect estimates of the site’s power properties,
so tracking error is the only remaining cost component de-
scribed in Section IV-A. This means that although cost savings
increase with the site’s actual PUE, that is simply because the

0.0% 25.0% 50.0% 75.0% 100.0%
Tracking Error

0.0%

50.0%

100.0%

Pr
op

or
tio

n

W13 tracking error at 50 degrees

PUE Percentile
0.05
0.5
0.95

Fig. 5. Cumulative distribution function of target-power-tracking error as a
percent of the R bid, for the W13 workload mix at 50◦F wet-bulb temperature.

tracking error decreases in that case, and it comes with the
previously-discussed impact on QoS degradation.

2) Worst-Performing Scenario: The worst-performing sce-
narios occur when the external wet-bulb temperature is near
50◦F, where there is a transition between the data center’s
free cooling mode of operation and its active cooling mode of
operation, as shown in Fig. 2. While the model indicates the
PUE is 1.2 at 50◦F, the 5th, 50th, and 95th percentiles of PUE at
50◦F are 1.15, 1.17, and 1.26, respectively. In this section, we
look more closely at behavior of the demand response policies
on mix W13 at 50◦F.

Workload mix W13 has a higher system utilization than the
other workload mixes. This means that the data center has less
capability to modulate its power level without causing work
to accumulate in the scheduler’s job queue. Fig. 5 shows the
power-tracking error of the data center when applying the site-
wide power management policy in different PUE prediction
error scenarios. This case results in better tracking error when
the site-wide power is under-estimated, and still struggles to
track the target power near the median case. This suggests
that the workload mix could benefit from standby jobs and
preemptible jobs as described in the original AQA work [7].

In contrast to the more spread out tracking error distribution
in the over-bidding case, the QoS degradation plots in Fig. 6
show more spread-out distributions in the under-bidding case.
Furthermore, not all applications are impacted equally, as some
have more drastic changes in QoS degradation across the PUE
percentile cases.

The applications most sensitive to under-predicting the
site power demand are lu.D.112 and mg.D.32, which
transition from far under threshold degradation in the 0.05
PUE percentile case to above threshold for 50% of runs in
the 0.95 PUE percentile case. Both of those applications stay
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well under their QoS thresholds in all temperatures evaluated
in the experiments with ideal site-wide power prediction
(Section IV-A experiments).

C. Application Weights

Applications weights used by the AQA demand response
policy are largely insensitive to the data center’s site-level
efficiency, as indicated by the nearly flat lines for all workload
mixes in Fig. 7. This suggests that it is sufficient to train the
AQA weights under a single simulated relationship between
server power and site-wide power consumption for each work-
load mix. The learned weight could be used as an initial state
in future searches for P̄ and R bids across different PUE
scenarios.

VI. CONCLUSION

Data centers globally consume a lot of power. As electricity
markets work to adopt renewable portfolio standards, there will
be increasing benefit to ensure big consumers are able to adapt
with time-varying availability. Data centers that participate in
demand response need accurate prediction and control of their
power consumption, but they still need to commit to the QoS
needs of their users.

This work proposes that adding a simple site-wide power
model to existing QoS-aware demand response policies can
improve the cost-saving opportunities while still being able
to meet QoS constraints. We perform simulations of multiple
mixes of applications on a 6000-server cluster with a simple
PUE model for site-wide power consumption. We demonstrate
that the presence of accurate PUE-based power predictions, we

can seize 1.3x cost savings compared to QoS-aware demand
response without site-wide power awareness.

Our evaluation of experimental results includes some obser-
vations that could be applied for future improvements to QoS-
aware demand response management algorithms. Specifically,
we note takeaways related to job weights used in the AQA and
AQA-SW policy, and takeaways related to demand response
risks from using a site-wide power model.

First, the job weights learned by the AQA policy’s training
mechanism depend on the relationship between server power
properties and job performance properties, but not non-server
power properties of the site. Future work may use this knowl-
edge to reduce the search space when working with long-lived
workload mixes across changing site-wide power efficiency.

Second, we note that there are competing risks in QoS and
power tracking, from over-bidding or underbidding due to site-
wide power-modelling inaccuracy. In our simple PUE model,
the greatest risks are near the modeled data center’s transition
between two different modes of site-level cooling operation.
Future work in site-wide power management policies could
investigate methods to proactively adjust bids for reduced risk
when operating in a low-confidence region of a site-wide
power model.

ACKNOWLEDGMENT

We would like to thank the Massachusetts Green High
Performance Computing Center for providing data and for
their help understanding site-wide power components.



REFERENCES

[1] “Renewable energy explained,” https://www.eia.gov/energyexplained/
renewable-sources/portfolio-standards.php, Jun. 2021.

[2] “International energy outlook 2021,” https://www.eia.gov/outlooks/ieo/
pdf/IEO2021 ChartLibrary Electricity.pdf, Oct. 2021.

[3] “PJM manual 12: Balancing operations,” https://pjm.com/∼/media/
documents/manuals/m12.ashx, Jun. 2022.

[4] B. Knowles, “ACM TechBrief: Computing and climate change,” ACM
Technology Policy Council, Nov. 2021.

[5] H. Chen, M. C. Caramanis, and A. K. Coskun, “The data center as a grid
load stabilizer,” in 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2014, pp. 105–112.

[6] A. Pahlevan, M. Zapater, A. K. Coskun, and D. Atienza, “ECOGreen:
Electricity cost optimization for green datacenters in emerging power
markets,” IEEE Transactions on Sustainable Computing, vol. 6, no. 2,
pp. 289–305, 2021.

[7] Y. Zhang, D. C. Wilson, I. C. Paschalidis, and A. K. Coskun, “Hpc data
center participation in demand response: An adaptive policy with qos
assurance,” IEEE Transactions on Sustainable Computing, vol. 7, no. 1,
pp. 157–171, 2022.

[8] ——, “A data center demand response policy for real-world workload
scenarios in hpc,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2021, pp. 282–287.

[9] “Efficiency - data centers - google,” https://www.google.com/about/
datacenters/efficiency/, 2021.

[10] Y. Fu, X. Han, K. Baker, and W. Zuo, “Assessments of data centers
for provision of frequency regulation,” Applied Energy, vol. 277,
p. 115621, 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0306261920311247

[11] M. Maiterth, G. Koenig, K. Pedretti, S. Jana, N. Bates, A. Borghesi,
D. Montoya, A. Bartolini, and M. Puzovic, “Energy and power aware
job scheduling and resource management: Global survey — initial anal-
ysis,” in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2018, pp. 685–693.

[12] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing centers and electricity ser-
vice providers: A geographically distributed perspective on demand
management in europe and the united states,” in High Performance
Computing, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. Cham:
Springer International Publishing, 2016, pp. 243–260.

[13] A. A. Chien, R. Wolski, and F. Yang, “The zero-carbon cloud:
High-value, dispatchable demand for renewable power generators,”
The Electricity Journal, vol. 28, no. 8, pp. 110–118, 2015.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1040619015001931

[14] “MGHPCC,” https://www.mghpcc.org/, 2021.


