
MicroFaaS: Energy-efficient Serverless on
Bare-metal Single-board Computers

Anthony Byrne†, Yanni Pang†∗, Allen Zou†∗, Shripad Nadgowda§ and Ayse K. Coskun†
†Boston University, Boston, MA 02215; Emails: {abyrne19, yanni, allenzou, acoskun}@bu.edu
§IBM T.J. Watson Research Center, Yorktown Heights, NY 10598; Email: nadgowda@us.ibm.com

Abstract—Serverless function-as-a-service (FaaS) platforms of-
fer a radically-new paradigm for cloud software development, yet
the hardware infrastructure underlying these platforms is based
on a decades-old design pattern. The rise of FaaS presents an
opportunity to reimagine cloud infrastructure to be more energy-
efficient, cost-effective, reliable, and secure. In this paper, we show
how replacing handfuls of x86-based rack servers with hundreds of
ARM-based single-board computers could lead to a virtualization-
free, energy-proportional cloud that achieves this vision. We
call our systematically-designed implementation MicroFaaS, and
we conduct a thorough evaluation and cost analysis comparing
MicroFaaS to a throughput-matched FaaS platform implemented
in the style of conventional virtualization-based cloud systems.
Our results show a 5.6x increase in energy efficiency and 34.2%
decrease in total cost of ownership compared to our baseline.

Index Terms—serverless infrastructure, bare metal, function-as-
a-service, single-board computers, energy-proportional computing

I. INTRODUCTION

The story of cloud computing has long been driven by a
desire to improve efficiency. Office space efficiency drove
servers out of the basements of corporate headquarters and
into colocation facilities. Cost efficiency then motivated the
multiplexing of those physical servers with virtual machines
(VMs). Finally, what some CEOs might call “personnel
efficiency” catalyzed the shift of those VMs out of the care
of expensive in-house IT staff and into the vast datacenters and
billed-by-the-hour auspices of Amazon, Google, Microsoft, and
other commercial cloud providers. Thus, the story continues
with the rise of “microVMs,” containers, and most recently,
function-as-a-service (FaaS) or “serverless.”1

Despite this focus on efficiency and the fact that cloud
datacenters consumed over 1% of all electricity used globally
in 2020, the hardware architectures underlying the cloud have
largely remained centered around the venerable x86-based rack
server—and its lackluster energy efficiency—for decades [1],
[2]. Meanwhile, the x86 CPUs powering most of these
servers have stagnated, struggling to eke out >5% estimated
year-over-year improvements in single-program speed since
2017 [3]. In this paper, we imagine a cloud architecture
that breaks free of the conventional model by exploiting the
stateless and granular nature of serverless functions, which can
be securely run-to-completion on energy-efficient ARM-based

This work is partially supported by the IBM T.J. Watson Research Center
and the Boston University Undergraduate Research Opportunities Program.
∗Yanni Pang and Allen Zou contributed equally to this work.
1We use the terms “serverless” and “FaaS” interchangeably to refer to an

event-driven cloud computing paradigm in which developers write stateless
functions to be hosted on and automatically managed by a cloud platform.

single-board computers (SBCs) without the need for expensive
virtualization.2 We call our prototype implementation of this
vision MicroFaaS, and we hope that by replacing rack servers
with hundreds of hardware-isolated worker nodes, MicroFaaS
will significantly increase cloud energy efficiency and security
while reducing costs for both cloud operators and users.

It is worth noting that we are neither arguing for a wholesale
rejection of the conventional cloud datacenter model nor
proposing a complete replacement. Instead, we are suggesting
there exists a cheaper, more energy-efficient, and more secure
infrastructural model specifically for serverless FaaS platforms
compared to the conventional cloud infrastructures that most
cloud operators have built their recent serverless platforms
atop. In addition to proposing and implementing such a novel
model, we argue that the rise of serverless computing presents
a unique opportunity for radical infrastructural change due to
FaaS platforms’ inherently high-level interface and recent work
showing that conventional cloud architectures handle serverless
workloads rather inefficiently [4].

MicroFaaS differentiates itself from previous energy-efficient
cloud proposals by focusing entirely on FaaS workloads
and altogether eschewing virtualization in favor of hardware
isolation, single-tenancy, and a run-to-completion scheduling
model. More specifically, our contributions include:

• a detailed proposal for MicroFaaS, an energy-efficient FaaS
platform architecture based on a cluster of SBCs acting
as single-tenant worker nodes with highly-reproducible
and virtualization-free execution environments.

• a systematically-designed prototype implementation of
MicroFaaS, including open-source cluster orchestration
software, a Linux distribution highly optimized for use
as a worker’s execution environment, and a workload
suite composed of both original and previously-published
serverless functions.3

• a thorough evaluation comparing our implementation of
MicroFaaS to a traditional virtualization-based serverless
platform along the axes of throughput, energy consumption,
and economic cost efficiency, in which we demonstrate
a 5.6x increase in energy efficiency and a 34.2% decrease
in total cost of ownership (TCO).

We begin by offering background information, including
related works, in Section II. Then, after explaining our proposed

2We use a broad definition of virtualization in this paper that includes both
conventional VMs and containerization methods like LXC.

3See github.com/peaclab for all open-source artifacts of this work.

https://github.com/peaclab

architectural approach to serverless in Section III, we design and
evaluate a prototype implementation of MicroFaaS in Section IV.
Next, we discuss the results of our evaluation in Section V.
Finally, we conclude and discuss future work in Section VI.

II. BACKGROUND & RELATED WORK

Serverless represents the next generation of cloud computing,
offering cloud platform users fine-grained resource metering
and near-instantaneous autoscaling with little-to-no server
administration knowledge necessary. By design, these benefits
give cloud providers unprecedented levels of freedom in the
design and management of the hardware and software stacks
underlying their customers’ applications, as most serverless
users, unlike users of VMs or containers, do not care to directly
manipulate infrastructure-level details (e.g., virtual hard disk
size). In other words, serverless allows cloud providers to
radically reconfigure their infrastructure to be optimized for any
metric(s) (e.g., energy efficiency, reliability, or both) however
they see fit, as long as they fulfill customer expectations.

Of course, many cloud computing platforms have existed
for decades longer than modern serverless offerings. We
refer to the infrastructural model these older platforms
typically follow as “conventional cloud architecture,” which we
define as a hardware/software design pattern centered around
warehouse-like datacenters filled with large numbers of racks,
each holding dozens of x86-based rack servers typically acting
as hypervisors for the “instances” (i.e., VMs or containers) they
host. Customers can then upload software to these instances
and pay-as-they-go for the hardware resources they consume.

Conventional cloud architecture has been and will likely
continue to be a performant and profitable model for most
general-purpose cloud computing. Therefore, it is understandable
that most cloud providers have opted to build their serverless
platforms atop their existing conventional cloud infrastructures,
despite the aforementioned design freedoms and research
showing that conventional cloud architectures handle serverless
workloads somewhat inefficiently [4], [5]. As a result, however,
today’s serverless platforms inherit many of conventional cloud
architecture’s problems, including virtualization-related security
vulnerabilities and high performance variability due to practices
like multi-tenancy [6], [7]. Furthermore, serverless functions’
short-lived, bursty nature can intensify these issues to the point
of essentially negating the core benefits of serverless computing:
e.g., high performance/latency variability makes it challenging
to predict runtime costs or satisfy real-time guarantees.

An emerging body of work seeks to measure the potential
benefits of diverging or breaking entirely away from conventional
cloud architecture. This body includes λ-NIC [8], which finds
that running serverless functions on ASIC-based network
interface cards (a.k.a. SmartNICs) can result in “two orders
of magnitude improvement in latency and throughput compared
to existing serverless compute frameworks.” Said functions,
however, must be written in a restrictive C-like language (Micro-
C) that lacks many of the conveniences serverless developers
have come to expect from the more-robust languages supported
by conventional platforms (e.g., Python, Golang, Javascript).

dReDBox [9] finds that decoupling resources like RAM and hard-
ware accelerators from conventional server mainboards leads to
more-elastic scaling and lower datacenter TCO, but its approach
still requires a conventional VM-based abstraction layer. Other
works in this area explore serverless computing on edge devices;
for example, Gand et al. [10] experiment with a cluster of 8
Raspberry Pi SBCs running Docker Swarm, openFaaS, and
Prometheus and find that throughput was bottlenecked by the
SBCs’ limited hardware resources and networking capacity.

It is worth noting that, except for dReDBox, none of these
works address the energy- or cost-efficiency of their proposed
optimizations. Previous proposals for more energy-efficient
cloud platforms have been mainly restricted to incremental
optimizations of the conventional hardware model, e.g., consoli-
dation of VMs onto fewer physical rack servers such that excess
servers can be powered-down in an effort to approximate energy-
proportional computing [2], [11]. More radical proposals, such as
those that explore non-x86 cloud datacenters (e.g., ARM-based
proposals like Cloud/IX [12]) and clouds composed of clusters
of SBCs (e.g., Kittyhawk [13]), have demonstrated measurable
energy- or cost-efficiency benefits, but neither commercial nor
research cloud operators have widely adopted them. We largely
attribute this to a mismatch between the often monolithic and
long-running workloads that defined the first two decades of
cloud computing (e.g., web servers and databases) and the
highly parallelized nature and low single-thread execution
speed of early ARM CPUs [14]. We contrast this with today’s
serverless functions, which are short-running, stateless, and
therefore much better suited to an ARM-based cloud platform.

III. MICROFAAS APPROACH

In this paper, we propose an architecture for serverless
hardware infrastructure based on the hypothesis that serverless
functions are better suited to smaller, low-overhead execution
environments than the highly multiplexed and virtualized
environments provided by conventional infrastructure. Therefore,
we propose replacing most large multi-core rack servers in
a conventional serverless cluster with many single-core
hardware-isolated compute nodes, i.e., SBCs (such as the
BeagleBone Black or Raspberry Pi Compute Module). In light
of such devices’ resource constraints, each node runs only the
bare minimum amount of software required to provide an
execution environment—e.g., a “just-enough operating system,”
similar to Container Linux or Alpine Linux, running just a
lightweight Python interpreter such as MicroPython [15]. Nodes
operate under a single-tenant, run-to-completion model—i.e.,
no other function will run on a node once the assigned function
has started executing. Between function executions, the node is
reinitialized to a known state (e.g., by rebooting), guaranteeing
each function a fully reproducible environment untainted
by potentially-malicious code leftover from previous tenants.
Furthermore, if the computational capacity offered by a node is
not needed at any given time, the node is put into a low-energy
sleep state or powered-off entirely, allowing for nearly-linear
energy-proportional computing [16].

We believe our approach offers several benefits, which we
discuss in detail below.

a) Hardware-based Isolation: Just like “air-gapping” a
computer is the most effective way to ensure it is safe from
network-based attacks, physical host separation is the most effec-
tive way to protect a serverless application from its would-be co-
tenants. Even applications running on fully virtualized hardware
(e.g., VMs or Kata Containers) have been shown to be vulnerable
to attacks such as Spectre and Meltdown [17], [18]. Allocating a
single serverless function to a conventional rack server would be
far too costly and inefficient, but allocation to a small, low-cost
SBC mitigates these inefficiencies. Similarly, the best way to
ensure the currently-scheduled FaaS function remains unaffected
by previous tenants of its worker node (e.g., from rootkits or
leftover cache entries) is to electronically reset its hardware to
a known state—i.e., to reboot. Rebooting a conventional rack
server after each function execution would be impractical, often
taking 55 seconds or more to do so [19]. SBCs, on the other
hand, can be rebooted in less than 2 seconds (see Sec. IV-A).

b) Reduced Energy Use: Researchers have long agreed
that high-performance computing clusters built with “wimpy
cores” like ARM-based CPUs can achieve significantly more
computation per unit power (i.e., FLOPS per watt) than those
built on “brawny cores” like x86-based CPUs [20], [21].
However, this insight has not led to widespread adoption
of ARM-based CPUs in cloud datacenters, as the limited
parallelizability and low average utilization patterns of classical
cloud applications reduce the marginal benefits of a wimpy-core-
powered cloud [14]. While this may have been true for previous
cloud software architectures, we argue that serverless applica-
tions are well-positioned to reap the benefits of wimpy cores
due to their discrete, stateless, and largely IO-bound functions
written in platform-independent high-level languages like Python.
Furthermore, MicroFaaS’s policy of completely powering down
unutilized nodes effectively implements energy-proportional
computing to a degree that conventional clouds have yet to
achieve [2], [16]. For example, imagine a rack server consumes
100 watts while hosting ten active VMs; it is highly unlikely
this server will consume 50 fewer watts once five of its VMs are
suspended. In contrast, a 10-node MicroFaaS cluster indeed uses
roughly 50% less power when five of its nodes are powered-off,
and this linear relationship holds regardless of scale (see Fig. 5).

c) Cost Transparency & Reduction: Similar to the energy-
proportionality benefits discussed above, a MicroFaaS cluster
would have the added benefit of being transparently cost-
proportional. Consider, for example, how a cloud provider would
estimate the marginal and operational costs of increasing a
datacenter’s computational capacity such that 100,000 additional
serverless functions could be in-flight (i.e., concurrently execut-
ing) at any given time (assuming the datacenter’s networking,
cooling, and power infrastructure is already equipped for such an
upgrade). Providers operating conventional architectures would
need to estimate the range of functions that a single rack server
could be running at one time, the resulting range of per-function
energy consumption rates, the overhead of virtualization or
other isolation methods, etc., before being able to produce a
loosely-bounded cost range. A provider operating a MicroFaaS
architecture, on the other hand, can produce a tightly-bounded

A B C D E F G H I
0

1

2

3

4

5

A
vg

.B
oo

t
Ti

m
e

(s
ec

) Real
CPU

Optimization
A Linux 5.11 default config
B Kernel config reduction
C Python → MicroPython
D rootfs → initramfs
E Enab. UBoot falcon mode
F Disab. Ethernet auto-neg
G Disab. PHY soft reset
H DHCP → static IP
I Net-config in kernelspace

Figure 1: Illustrating changes in the boot time of our worker OS
throughout its development process (see Sec. IV-A). Real refers
to the “wall clock” time that passes between power-on and the
device’s first network connection. CPU refers to the amount
of time the CPU was not idle during boot (as recorded by the
Linux kernel). We use an arrow (→) to mean “replaced by.”

cost estimate simply by multiplying the hardware and average
energy cost of a single node by 100,000. Furthermore, due
to reduced cooling needs, a lack of moving parts, and lower
average time-powered-on (due to energy-proportionality), we
expect the SBCs that act as MicroFaaS nodes to fail less
frequently than traditional rack servers4, leading to an even
tighter bound on operating costs. This increased cost certainty
would allow serverless cloud providers to more precisely
build their computational supply to match their customers’
demands, leading to lower costs for both providers (due to
less overprovisioning and underutilization) and customers.

IV. MICROFAAS PROTOTYPE

Our aim in designing and implementing this prototype is to as-
sess the feasibility, performance, and energy efficiency of Micro-
FaaS as an alternative to conventional serverless architectures. To
this end, we build and experimentally compare two FaaS clusters:
one of low-cost SBCs (modeling MicroFaaS) and another of x86-
based VMs (modeling a conventional serverless platform). Fur-
thermore, we design both clusters to be throughput-equivalent,
i.e., roughly equal in terms of functions executed per unit time,
allowing us to directly compare both clusters on the bases of
energy consumption, end-to-end latency, and economic cost.

A. Worker OS

Each worker machine (physical or virtual) in our test clusters
runs a “barebones” Linux distribution systematically designed
and built in a manner similar to Linux From Scratch [24]. As
depicted in Fig. 1, we rigorously evaluate each change to our
worker OS with the aim of reducing boot time as much as possi-
ble, beginning with our choice of Linux kernel version (A). We
configure our kernel such that only the bare minimum features
and drivers required to run on our two target platforms are com-
piled into the final binary (B). We also patch the source code of

4The manufacturers of the hardware we use in our evaluation, like most
computer manufacturers, do not publish statistics on mean time between failures
(MTBF), and calculation of such metrics is outside of the scope of this paper. In-
stead, we invite the reader to make comparisons between SBCs such as the Tech-
nologic Systems TS-7800-V2 (MTBF = 2,320,456 hours [22]) and server com-
ponents such as the Intel Server Board S2600CW (MTBF = 234,708 hours [23]).

Table I: Workload Functions

CPU- or RAM-bound Network-bound
Name Description Name Description
FloatOps* floating-point trigono-

metric operations
RedisInsert insert Redis key-value

record
CascSHA cascading SHA256

hash calculations
RedisUpdate update Redis key-

value record
CascMD5 cascading MD5 hash

calculations
SQLSelect query our PostgreSQL

server using SELECT
MatMul* large random matrix

multiplication
SQLUpdate query our PostgreSQL

server using UPDATE
HTMLGen dynamically generate

and serve HTML
COSGet* download from MinIO

cloud object store
AES128* cascading AES128

encryption/decryption
COSPut* upload to MinIO

cloud object store
Decompress* extract a DEFLATE-

compressed string
MQProduce send message to

Kafka topic
RegExSearch find all regular expr.

matches in input
MQConsume receive message from

Kafka topic
RegExMatch determine if input

matches regular expr.

*Adapted from or inspired by FunctionBench [25].

certain networking drivers such that they (1) are initialized earlier
in the boot process, (2) skip the auto-negotiation phase of the
Ethernet connection handshake (F), and (3) avoid unnecessarily
resetting PHY hardware (G)—altogether significantly minimiz-
ing NIC-related boot delays. We then create an initial ramdisk
(a.k.a. initramfs) containing only the MicroPython interpreter (C)
and a stripped-down version of the BusyBox software suite.
Finally, we set the kernel command line arguments such that
the kernel configures networking on-boot with a static IPv4 ad-
dress (I, H) and uses the initramfs as the sole root filesystem (D).
This results in an OS that boots quickly (1.51 seconds on ARM;
0.96 seconds on x86) and reproducibly (as the bootloader loads
a clean copy of the initramfs into RAM on each boot) and can
be easily ported to other SBC platforms (with the exception of
one vendor-specific patch to our SBC’s PHY driver, G).

B. MicroFaaS-based Cluster

Our MicroFaaS-based test cluster (shown in Fig. 2) acts
as a small-scale proof-of-concept for a future datacenter-
scale serverless platform. This small cluster comprises ten
BeagleBone Black SBCs, each containing a single-core 1 GHz
ARM Cortex-A8-based microprocessor (the TI Sitara AM3358),
512 MB of off-chip DDR3 RAM, 4 GB of eMMC flash storage,
and a 10/100 Ethernet network interface. We flash each SBC’s
eMMC storage with our worker OS and the U-Boot bootloader
compiled in “falcon mode” to further minimize boot time (E).
We assign each SBC a static IPv4 address and connect it to
a 24-port managed Gigabit Ethernet switch, to which we also
connect our orchestration server (see Sec. IV-D).

C. Test Workloads

We perform all experiments in this paper using MicroPython
adaptions of six Python functions from the FunctionBench
FaaS benchmark suite5 [25] and eleven benchmark functions

5We unfortunately cannot use all of the functions provided by FunctionBench
(as well as most functions found in other benchmark suites we considered,
e.g., ServerlessBench [26] and SeBS [27]) because they contain cloud-platform-
specific code or are otherwise incompatible with MicroPython or our control
plane.

Figure 2: Our MicroFaaS prototype test cluster.

CascMD5
CascSHA

COSGet
COSPut

SQLUpdate
Decompress

0

50

100

150

Workload Function

A
vg

.R
un

tim
e

(m
s)

0

50

100

150
MicroFaaS Working MicroFaaS Overhead

Conventional Working Conventional Overhead

Figure 3: Runtime of select workload functions, broken into
time each worker spends executing the function (Working)
and time each worker spends receiving the function input and
returning the function result over the network (Overhead).

of our own creation. We select or design each of the resulting
17 functions, shown in Table I, to stress the worker’s CPU and
memory while simulating many types of applications currently
found on FaaS platforms. For functions that involve accessing
a resource over the network (e.g., SQLSelect), we connect
an additional SBC dedicated to hosting that resource (e.g.,
PostgreSQL server) to our Ethernet switch.

D. Cluster Orchestration

Because most widely available open-source orchestration
platforms (OPs) are not designed with bare-metal workers in
mind, we build a proof-of-concept OP in Python to handle
function allocation, invocation, and data collection for all
experiments in this paper. We run our OP on a dedicated SBC
connected to the same Ethernet network as our test clusters.
In addition, we establish GPIO connections between the OP
SBC and each worker SBC’s PWR_BUT pin, allowing the OP
to power on/off each worker as needed.

The OP maintains a job queue for each worker, and a job is
added to a random sampling of those queues every second, sim-
ulating the arrival of function invocations. Upon assignment of a
job to its queue, a worker node powers on and begins executing
the job. Upon completion, the worker either reboots and executes
its next job or powers down until the OP assigns it another job.

V. EVALUATION RESULTS

In order to demonstrate the feasibility of MicroFaaS as an
energy-efficient serverless architecture, we evaluate our Micro-
FaaS prototype against a cluster of VMs acting as a small-scale
model of existing serverless platforms built atop conventional
cloud architecture. This cluster is composed of several QEMU
“microVM” virtual machines (similar to Amazon’s Firecracker

0

15

30

45

E
ne

rg
y

U
se

(J
/f

un
c)

4 6 8 10 12 14 16 18

150

300

450

Worker Quantity

T
hr

ou
gh

pu
t

(f
un

c/
m

in
)

Conventional
MicroFaaS (w/ 10 SBCs)

Figure 4: Analyzing the energy efficiency and throughput of
a conventional virtualization-based FaaS cluster when varying
the number of VMs running on a single rack server. Notice
how our MicroFaaS cluster’s energy use is consistently lower
than that of the conventional cluster.

concept), each allocated one vCPU and 512 MB of RAM, run-
ning on a Thinkmate RAX rack server equipped with 16 GB of
RAM and a 12-core AMD Opteron 6172 processor with a max-
imum clock frequency of 2.1 GHz. Because we wish to ensure
our conventional cluster can execute roughly the same number of
functions per minute as our ten-SBC MicroFaaS cluster (which
is capable of 200.6 func./min. on average), we choose to use
six VMs (altogether capable of 211.7 func./min. on average) for
most experiments. We assign each VM a static IPv4 address and
a virtual NIC bridged with our host machine’s physical Gigabit
Ethernet NIC. We then connect the host machine to our orchestra-
tion server through a 24-port managed Gigabit Ethernet switch.

We begin evaluating both our MicroFaaS and conventional
clusters (separately) by instructing our OP to issue 1,000
invocation requests for each of our 17 workload functions
(shown in Table I), distributing each request to a random
set of workers (see Sec. IV-D). Then, using the timestamps
recorded by our OP and each worker, we calculate the average
execution time and network-related overhead for each workload
function. We show a representative set of these runtimes in
Fig. 3, and we find that out of 17 functions, the MicroFaaS
cluster executes four faster than the conventional cluster and
nine at more than half the speed of the conventional cluster.

These performance results are consistent with previous ob-
servations that the ARM CPUs of most SBCs underperform the
“brawnier” x86 CPUs in most servers on certain workload classes
(see Sec. III-b). However, enhanced hardware or application-
specific accelerators could mitigate such performance
differences, albeit at the price of increased component costs or
energy use. For example, upgrading our evaluation SBC’s NIC
from Fast Ethernet to Gigabit Ethernet would likely reduce the
overhead of functions like COSGet, and adding a cryptographic
accelerator might significantly reduce the runtime of CascSHA.

In exchange for the above-mentioned reduced execution
speed, ARM-based SBCs are remarkably energy efficient. To

0 2 4 6 8 10
0

25

50

75

100

125

150

Worker Quantity

A
vg

.P
ow

er
(w

at
ts

)

Conventional
MicroFaaS

Figure 5: Demonstrating energy-proportional computing by
comparing the average power consumption of multiple SBCs
and that of multiple VMs on a single rack server. Notice the
difference in idle (i.e., worker qty. = 0) power consumption.

demonstrate this, we measure the total energy use of each
cluster using a WattsUp Pro power meter and find that our
MicroFaaS cluster uses 5.7 Joules to execute a single function
on average, while our conventional cluster consumes 32.0 Joules
per function—a 5.6x increase in energy efficiency. Moreover,
our MicroFaaS cluster’s advantage holds even when we enlarge
our conventional cluster to its point of peak efficiency (16.1
J/func.) by increasing the number of VMs until the resources
of its underlying rack server are saturated, as shown in Fig. 4.

Additional advantages emerge upon analysis of the lifetime
costs associated with MicroFaaS and conventional serverless
clusters. We apply a simplified version6 of a recent datacenter
technology TCO model by Cui et al. [28] to a hypothetical
42U server rack containing 41 mid-range rack servers and a
refurbished Gigabit Ethernet top-of-rack (ToR) switch. Next, we
apply the same model to a hypothetical MicroFaaS cluster with
equivalent throughput, which we estimate would be composed
of 989 SBCs and 21 of the same ToR switches. We perform this
analysis using the assumptions described in the Appendix over a
5-year lifespan under two sets of conditions: “ideal” conditions
where every node is constantly fully-utilized and never needs
replacement (i.e., 100% online rate or OR), and “realistic”

6We choose not to consider the infrastructural cost component of Cui et
al.’s model due to how wildly land, building construction, and cooling costs
can vary across time, geography, and specific technologies in use. We also do
not consider the maintenance component of the original model due to similar
variations in technician labor costs and hardware warranty terms.

Table II: 5-Year Single Rack Lifetime Cost Comparison*

Ideal Realistic
(100% Util., 100% OR) (50% Util., 95% OR)

Expense Conventional MicroFaaS Conventional MicroFaaS
Compute $82,451 $51,923 $86,791 $54,655
Network $574 $12,280 $574 $12,280
Energy $41,676 $17,884 $29,242 $11,778
Total $124,701 $82,087 $116,607 $78,713

*Based on TCO model by Cui et al. [28]. See the Appendix for assumptions.
Costs shown in U.S. dollars.

conditions where nodes are only 50%-utilized on average and
5% of nodes require replacement at some point (i.e., 95% OR).

As demonstrated by the results shown in Table II, the
MicroFaaS cluster is 32.5-34.2% less expensive than a
conventional cluster with equivalent throughput, largely thanks
to the low cost of SBCs and the energy-proportionality inherent
in MicroFaaS’s design allowing unutilized nodes to consume
almost no power (see Fig. 5). We highlight that this result is in
spite of the high acquisition and energy costs associated with
(somewhat inefficiently) networking 989 SBCs using 21 ToR
switches and 1.8 kilometers (1.1 miles) of Cat6 cabling.

VI. CONCLUSION

In this paper, we presented MicroFaaS, an energy-efficient al-
ternative to the conventional cloud architectures underlying most
modern serverless platforms. We evaluated our systematically-
designed MicroFaaS prototype against a conventional serverless
platform with equivalent throughput and found that MicroFaaS’s
use of SBCs as virtualization-free worker nodes offers
measurable energy efficiency and cost benefits at the expense of
performance. For many users, these significant benefits will out-
weigh the current performance penalty, and we hope to explore
optimizations (e.g., application-specific hardware accelerators
and integrations for widely-used FaaS orchestration software) in
future work that will only further mitigate these penalties and
demonstrate additional advantages of the MicroFaaS model.

APPENDIX: COST MODEL ASSUMPTIONS

When calculating “compute” costs (known as “server
acquisition costs” or Cs by Cui et al. [28]), we assume a
modern mid-range rack server (Cserver) costs $2,011—the retail
price listed on the Dell website for a PowerEdge R6515 with
16 GB of RAM and 8-core AMD EPYC 7232P CPU, which we
assume would perform similarly to the rack server we use in
our evaluation. We also assume an SBC costs $52.50—the retail
price of the BeagleBone Black SBC we use in our evaluation.
Throughout our analysis, we assume a hardware depreciation
period of 5 years (i.e., Tserver = Tcore = Tnet−rack = 5 years).

When calculating network costs (a.k.a. “network acquisition
costs” or Cn), we assume a refurbished 48-port ToR switch
(Cnetperrack) costs $500—the average price of a used Cisco
Catalyst 2960S-48LPS managed switch based on several
networking equipment suppliers’ catalogs. We also assume that
each node will connect to its ToR switch using 6 feet (1.8 meters)
of Cat6 cable priced at $0.30/foot (i.e., Ccore−node = $1.80).

When calculating energy costs (a.k.a. “power costs” or Cp),
we assume the characteristics of the “benchmark datacenter”
described by Cui et al.; i.e., our hypothetical datacenter’s power
usage effectiveness (PUE), server power usage effectiveness
(SPUE), and price of electricity (Ce−kwh) are 1.3, 1.2, and
$0.10/kilowatt-hour, respectively. We assume each rack server
consumes an average of 150 watts under load (Pss) and 60
watts when idle (Pss−idle), and we assume Pss = 1.96 watts and
Pss−idle = 0.128 watts for each SBC (which fully powers down
when “idle”). Finally, we assume each ToR switch consumes an
average of 40.87 watts as listed on Cisco’s website (i.e., Pnet =
40.87 ∗Nrack watts, where Nrack = dNserver−IT ÷ 48e).

ACKNOWLEDGMENT

The authors thank Prof. J. Appavoo for his invaluable early
feedback and the anonymous reviewers for their detailed
comments.

REFERENCES

[1] E. Masanet et al., “Recalibrating global data center energy-use estimates,”
Science, vol. 367, no. 6481, pp. 984–986, Feb. 2020. https://doi.org/ggm3sk

[2] C. Jiang et al., “Energy proportional servers: Where are we in 2016?”
in 37th Int. Conf. Distrib. Comput. Sys. (ICDCS). IEEE, 2017, pp.
1649–1660. https://doi.org/gmsk69

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 6th ed. Elsevier, 2017.

[4] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural implications
of function-as-a-service computing,” in Proc. 52nd Annu. Int. Symp.
Microarchitecture (MICRO). ACM, Oct. 2019, pp. 1063–1075.

[5] V. Yussupov et al., “A systematic mapping study on engineering
function-as-a-service platforms and tools,” Proc. 12th Int. Conf. Utility
and Cloud Comput. (UCC), pp. 229–240, 2019. https://doi.org/gmsk63

[6] O. AbdElRahem, A. M. Bahaa-Eldin, and A. Taha, “Virtualization
security: A survey,” in 11th Int. Conf. Comput. Eng. Sys. (ICCES).
IEEE, 2016, pp. 32–40. https://doi.org/gf8xtq

[7] J. Ericson, M. Mohammadian, and F. Santana, “Analysis of performance
variability in public cloud computing,” in Int. Conf. Inform. Reuse and
Integr. (IRI). IEEE, 2017, pp. 308–314. https://doi.org/gmsk65

[8] S. Choi et al., “λ-NIC: Interactive serverless compute on programmable
SmartNICs,” in 40th Int. Conf. Distrib. Comput. Sys. (ICDCS). IEEE,
2020, pp. 67–77. https://doi.org/gv66

[9] M. Bielski et al., “dReDBox: Materializing a full-stack rack-scale
system prototype of a next-generation disaggregated datacenter,” in
Des., Automat. & Test in Europe Conf. & Exhib. (DATE), Mar. 2018,
pp. 1093–1098. https://doi.org/gmsk7f

[10] F. Gand et al., “Serverless container cluster management for lightweight
edge clouds,” in Proc. 10th Int. Conf. Cloud Comput. and Services Sci.
(CLOSER). SCITEPRESS, Feb. 2020, pp. 302–311.

[11] A. Pahlevan et al., “Energy proportionality in near-threshold computing
servers and cloud data centers: Consolidating or not?” in Des., Automat. &
Test in Europe Conf. & Exhib. (DATE). IEEE, Mar. 2018, pp. 147–152.

[12] Y. Leokhin and P. Panfilov, “A study of Cloud/IX operating system
for the ARM-based data center server platform,” Procedia Eng., vol.
100, pp. 1696–1705, 2015. https://doi.org/gmsk7b

[13] J. Appavoo et al., “Kittyhawk: Enabling cooperation and competition
in a global, shared computational system,” IBM J. Res. and Develop.,
vol. 53, no. 4, pp. 9:1–9:15, Jul. 2009. https://doi.org/dpg6v2

[14] T. Mudge and U. Hölzle, “Challenges and opportunities for extremely
energy-efficient processors,” IEEE Micro, vol. 30, no. 4, pp. 20–24, 2010.

[15] D. George et al., “MicroPython,” 2021. https://micropython.org
[16] L. A. Barroso and U. Hölzle, “The case for energy-proportional

computing,” Computer, vol. 40, no. 12, pp. 33–37, Dec. 2007.
[17] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in

Symp. Secur. and Privacy (SP). IEEE, 2019, pp. 1–19.
[18] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”

in 27th USENIX Secur. Symp., 2018, pp. 973–990.
[19] A. Kinzhalin et al., “Enabling dynamic data centers with a smart

bare-metal server platform,” Cluster Comput., vol. 14, no. 3, pp. 245–258,
Sep. 2011. https://doi.org/fp5sx3

[20] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” SIGARCH Comput. Archit. News, vol. 35,
no. 2, p. 13–23, Jun. 2007. https://doi.org/bsdxcd

[21] D. Yokoyama et al., “The survey on ARM processors for HPC,” J. Super-
comput., vol. 75, no. 10, pp. 7003–7036, Oct. 2019. https://doi.org/gmsk68

[22] Technologic, “TS-7800 MTBF Data,” 2019. https://perma.cc/QD95-7HP4
[23] Intel, “Server Board S2600CW TPS,” 2020. https://perma.cc/CAB8-LMH8
[24] G. Beekmans et al., Linux From Scratch, 10th ed., B. Dubbs, Ed., 2021.
[25] J. Kim and K. Lee, “FunctionBench: A suite of workloads for serverless

cloud function service,” in 12th Int. Conf. Cloud Comput. (CLOUD).
IEEE, Jul. 2019, pp. 502–504. https://doi.org/gmsk64

[26] T. Yu et al., “Characterizing serverless platforms with ServerlessBench,”
in Proc. 11th Symp. Cloud Comput. (SoCC). ACM, Oct. 2020, pp. 30–44.

[27] M. Copik et al., “SeBS: A serverless benchmark suite for function-as-a-
service computing,” in 22nd Int. Middleware Conf., Dec. 2021, pp. 64–78.

[28] Y. Cui et al., “Total cost of ownership model for data center technology
evaluation,” in 16th Intersoc. Conf. Thermal and Thermomech. Phenomena
in Electron. Sys. (ITherm), 2017, pp. 936–942. https://doi.org/gmtnbh

https://doi.org/ggm3sk
https://doi.org/gmsk69
https://doi.org/gmsk63
https://doi.org/gf8xtq
https://doi.org/gmsk65
https://doi.org/gv66
https://doi.org/gmsk7f
https://doi.org/gmsk7b
https://doi.org/dpg6v2
https://micropython.org
https://doi.org/fp5sx3
https://doi.org/bsdxcd
https://doi.org/gmsk68
https://perma.cc/QD95-7HP4
https://perma.cc/CAB8-LMH8
https://doi.org/gmsk64
https://doi.org/gmtnbh

	Introduction
	Background & Related Work
	MicroFaaS Approach
	MicroFaaS Prototype
	Worker OS
	MicroFaaS-based Cluster
	Test Workloads
	Cluster Orchestration

	Evaluation Results
	Conclusion
	References

