Tritium: A Cross-layer Analytics System for Enhancing
Microservice Rollouts in the Cloud

Sadie Allen

Boston University

Srinivasan Parthasarathy
IBM Thomas J Watson Research Center

ABSTRACT

Microservice architectures are widely used in cloud-native applica-
tions as their modularity allows for independent development and
deployment of components. With the many complex interactions oc-
curring in between components, it is difficult to determine the effects
of a particular microservice rollout. Site Reliability Engineers must be
able to determine with confidence whether a new rollout is at fault for
aconcurrent or subsequent performance problem in the system so they
can quickly mitigate the issue. We present Tritium, a cross-layer ana-
lytics system that synthesizes several types of data to suggest possible
causes for Service Level Objective (SLO) violations in microservice
applications. It uses event data to identify new version rollouts, tracing
data to build a topology graph for the cluster and determine services
potentially affected by the rollout, and causal impact analysis applied
to metric time-series to determine if the rollout is at fault. Tritium
works based on the principle that if a rollout is not responsible for a
change in an upstream or neighboring SLO metric, then the rollout’s
telemetry data will do a poor job predicting the behavior of that SLO
metric. In this paper, we experimentally demonstrate that Tritium
can accurately attribute SLO violations to downstream rollouts and
outline the steps necessary to fully realize Tritium.

CCS CONCEPTS

* Software and its engineering — Software testing and debug-
ging; « Computer systems organization — Cloud computing.

KEYWORDS

Fault diagnosis, container systems, microservices, version rollouts

ACM Reference Format:

Sadie Allen, Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, and Ayse
K. Coskun. 2021. Tritium: A Cross-layer Analytics System for Enhancing
Microservice Rollouts in the Cloud. In Proceedings of WoC ’21: Workshop on
Container Technologies and Container Clouds (WoC '21). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3493649.3493656

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

WoC ’21, December 6, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9171-9/21/12. .. $15.00
https://doi.org/10.1145/3493649.3493656

Fabio Oliveira
IBM Thomas J Watson Research Center

Mert Toslali

Boston University

Ayse K. Coskun

Boston University

1 INTRODUCTION

Microservice applications have complex and dynamic interactions
and runtime environments, and this complexity makes it hard to
reproduce or diagnose failures in a testing environment. Faults or
performance anomalies could be the result of improper cluster con-
figuration, asynchronous service interactions, differences between
multiple instances of the same service, actual source code of a ser-
vice, or countless other issues [11]. One concern for Site Reliability
Engineers (SREs) is managing new service rollouts, which constantly
happen due to the practice of continuous integration and deploy-
ment [4]. These rollouts do not occur in isolation; varying request
volume, resource and load fluctuations, and countless other events
can happen at or near the same time, making it difficult to determine
if the rollout caused a significant change in the system, or if it was due
to one of these sources of noise.

1.1 Related Work

Fault diagnosis in microservice systems has already been gaining
attention; there are numerous recent works in this space [3, 5, 7, 16,
19, 22-25]. Many past efforts solve a piece of the problem of fault
diagnosis, but do not provide a comprehensive picture of the activities
in a microservice application. In addition, no prior existing works tar-
get rollout-specific fault diagnosis. In this section, we briefly discuss
some of the most relevant works and their drawbacks.

In Qiu et al.’s resource management framework FIRM[18], they
implement a localization algorithm to identify the microservice at
fault for an end-to-end SLO violation. Their algorithm first identifies
critical paths (paths of maximal duration starting with client requests)
and then uses a binary incremental SVM classifier to decide whether
each service in the critical path may be a candidate for being at fault
for the SLO violation. This localization algorithm requires training
on artificially injected performance anomalies prior to implementa-
tion on a system, and its reliance on critical paths means it is only
applicable to SLOs related to request latency.

Guo et al. developed a system called Graph-based Microservice
Trace Analysis (GMTA). This system abstracts traces into “paths”
representing business flows and uses these trace aggregates to aid
in visualizing service dependencies and diagnose problems in the
system by indicating anomalous traces [7]. While GMTA does pro-
vide efficient and flexible storage and access to trace data at several
granularities, it is primarily a data storage and visualization tool. It
can aid in human understanding of system architecture and problem
diagnosis, but lacks any automated detection or pinpointing of issues.

Some prior approaches aim to make use of more than one type
of data from the application. Luo et al. proposed a fault diagnosis
approach that leverages event and time-series data [15]. Their goal

https://doi.org/10.1145/3493649.3493656
https://doi.org/10.1145/3493649.3493656

WoC 21, December 6, 2021, Virtual Event, Canada

was to evaluate the correlation between events and time-series to
identify when specific events consistently lead to issues in the system.
They modeled their correlative analysis as a two-sample hypothesis
problem. The strength of their work is the utilization of heterogeneous
data types for fault diagnosis. However, the system must be trained on
arelatively large data set to obtain statistically significant results, and
does not utilize information about the system architecture to focus on
the most relevant data for a given problem.

Another approach by Shan et al. focuses on diagnosing the root
cause of small window long-tail (SWLT) latency (i.e., tail latency
within a one minute or smaller window [21]). They proposed an unsu-
pervised root cause analysis methodology that uses threshold-based
detection to detect anomalous latency levels. A two-sample test al-
gorithm is used to identify significantly changed time-series metrics,
and these are returned as potential root causes. This approach has
several limitations. First, it is only designed to work with the specific
detection and diagnosis of SWLT latency. Their approach does not
take into account the system architecture and topology, so every met-
ric is tested as a potential root cause (even metrics for containers that
are upstream' from the detected SWLT latency and on a different
node). Finally, this analysis is correlative; their approach does not
causally link the changed time-series to the long-tail latency, so the
two could happen simultaneously by coincidence.

A few others have strived to demonstrate causal relationships be-
tween SLO violations and their sources. Qiu et al. aimed to find the
root cause metrics using a causality graph and rank the top k possible
causes [19]. Their approach’s drawback is that the only potential root
causes are key performance indicators. SLOs violations cannot be
attributed to events, whereas in many cases, SREs would need to know
about events to remedy the problem. Only attributing SLO violations
to metrics adds another step for SREs as they must determine what
aspect of the metric changed and how the change affects the SLO.

1.2 The Vision for Tritium

We propose Tritium to provide a way for SREs to visualize their
cluster as well as determine causal relationships between rollouts and
SLO violations. At a high level, the steps of our diagnosis system are
as follows: (1) identify SLO violations using change point detection
methods, (2) monitor cluster events (using a container-orchestration
platform such as Kubernetes [12]) to identify new version rollouts, (3)
use topology graph gleaned from traces (e.g., Jaeger) to determine if a
given SLO violation is in a rollout’s “area of effect”, and (4) perform
statistical analysis on metric data to determine if the rollout is at fault.
See Figure 1 for a high level diagram of our system.

Tritium works based on the founding insight that if a rollout is
responsible for a change in an upstream or physically neighboring
SLO metric, that change will also reflect in the telemetry data (latency,
error rate, memory/CPU usage, etc.) of the rollout itself. Thus, the roll-
out’s telemetry data should serve as a reasonably accurate predictor
of the SLO. However, if other changes in the system are responsible,
then the rollout’s telemetry data will do a poor job predicting the
behavior of the SLO metric during the anomalous period. Our specific
contributions with the proposal of Tritium are as follows:

I'Service A is “upstream” of service B if service A depends on service B to complete
its task (and service B is “downstream” of service A).

Sadie Allen, Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, and Ayse K. Coskun

1. We identify key challenges in designing a system to attribute SLO
violations to specific system changes (i.e., microservice rollouts).

2. We present Tritium, a prototype system integrating many data
types to confidently attribute SLO violations to specific system
changes. Tritium introduces causal impact analysis [2] to the ap-
plication of fault diagnosis in microservice applications. We also
have prototyped a GUI with metric, event, and topology data
views.

3. We demonstrate the efficacy of our approach for Tritium when
identifying if a service rollout is problematic in Train Ticket [13],
a benchmark with 41 microservices.

2 DESIGN CHALLENGES

Tritium’s main goal is to determine if SLO violations are caused by
rollouts. However, it also intends to provide SREs with as much addi-
tional information about SLO violations as possible and enable them
to visualize and narrow down on issues in their cluster. We address
the following fault diagnosis design challenges with our proposed
solution.

Cross-layer data utilization: Tritium uses metric data, event data,
and topology data gleaned from traces to establish a comprehensive
picture of a cluster. In particular, we can vastly reduce our search
space by determining the “area of effect” of a given SLO, which con-
sists of metric/event data in upstream services or services co-located
on the same node.

Narrowing down useful metric data: Prometheus [17], the mon-
itoring software we use to obtain metric data from our cluster, collects
hundreds of different metrics for each service, container, and node
every few seconds. Not all of these metrics are useful in predicting
a given SLO. Thus, we correlate all of these metrics with the specific
SLO to determine those that best reflect its behavior in a normal,
healthy state. This narrows our search space to focus on the most
likely metrics to help in diagnosis.

Rollout vs. not rollout: The primary goal of our system is to es-
tablish whether or not a new rollout is at fault for some upstream or
neighboring SLO violation. This is important because it can tell SREs
if the problem is based in the source code of the new service version
or it is a resource management/architectural issue.

Solution robustness: Another benefit to our approach is that it can
be applied generally to any SLO. Although we perform experiments
primarily with latency as the SLO, a user could pick any metric re-
ported by monitoring database (e.g., Prometheus) and determine if
arollout affects it.

Establishing causation: It is essential not to just establish corre-
lation between a rollout event and a change in an SLO. To make the
correct decisions around rollouts and resource management, causal
relationships are necessary. Thus, we attempt to causally link issues
in SLOs with potential causes (rollout events) in this work.

Additional insights when a rollout is not at fault: If one finds
that a new rollout is not at fault for an SLO violation, it is beneficial to
provide as much information to SREs as possible to aid them in fault
diagnosis by identifying the best predictor metrics of the anomalous
SLO. These metrics give SREs a starting point to continue their own
diagnosis of the issue.

Automated prediction testing: Once an SLO change is attributed
to arollout, this hypothesis can be tested by an automated rollback. If

Tritium: A Cross-layer Analytics System for Enhancing
Microservice Rollouts in the Cloud WoC 21, December 6, 2021, Virtual Event, Canada

Topology, Frontend:
event, —_— Cluster
metric data Visualization

> \
Database Metric data: SLO

‘mong 08 Check for

SLO anomalous
behavior (augmented
Dickey-Fuller

Causal Impact
Analysis Rollback
hypothesis
testing

Telemetry data

Metric Data—p| P
monitoring

Microservice
Cluster

redictor metrics

Event Dat:

Microservice

Return best
Kubpernetes Trace Data—p tracing system

predictor metric

(&0 aeger

-

Figure 1: An overview of Tritium. Various types of data are collected and stored in a database. The data is sent to our interactive
front-end which renders topology, event, and metric data views. SLO metric data is also sent to an anomaly detector. If anomalous
behavior is detected AND there was recently a new rollout, causal impact analysis is triggered to determine if the rollout is at fault for
the SLO violation. Otherwise, metrics most highly correlated with the SLO during the anomalous behavior are returned.

reviews-v3 a) istio-proxy reviews b)

Legend ratings-v1 B
ratings istio-proxy

atings-v1

reviews-v3
® node

0 container
@ pod Oratings
0 Service

TAY deployment !
- det@
@ scheduled on

@ runs

@ references
targets

@ calls

® owns
backs

. - istio-prox
points to productpage-vi producipage istio-proxy proxy

ratings-v1| reviews-v1

reviews

reviews-v2 details
O reviews details-v1 B
minikube
— (B —
/ reviews-v2

reviews-v1

-~ istio-proxy istio-proxy
L]) details-v1 .
productpage-v1 reviews-va

reviews
producipage-v1
productpage

Figure 2: Two time-point topology views of the Bookinfo [1] application. These views are components of the cluster visualization tool.
We show two different views of the same cluster at the same point in time to highlight the way in which users could filter the view to
focus on different relationships: a) Call-graph view showing services, deployments, and pods; b) A topology view showing nodes, pods,
and containers.

the SLO returns to normal, this confirms the prediction. Otherwise, our second, there must be a significant change in an SLO. The system
prediction may be wrong, so that the service can be rolled out again. then works as follows:

1. Identify best predictor variables for the anomalous SLO through
correlative analysis (i.e., Pearson). This analysis is performed

3 SYSTEM VISION

We implement a prototype of Tritium’s fault diagnosis and visualiza- prior to the anomalous behavior when the metric in question is
tion system using Kubernetes, Istio [8], Prometheus, and Jaeger [9]. behaving healthily.

In practice, Tritium will operate alongside a microservice application, 2. Predict behavior of that SLO during the anomalous period us-
collecting data and performing analyses. Users will have control over ing the identified predictor variables and the causal impact algo-
the data they see and the SLOs they care about. rithm [2].

Fault Diagnosis: The inputs to our fault diagnosis system are event 3. Evaluate causal impact results: (a) If the behavior prediction is ac-
and architecture data obtained from the Kubernetes API, trace data curate without using downstream rollout metrics as predictors, the
from Jaeger, metric data from Prometheus, and a list of SLOs, which rollout is not to blame. Determine the best predictor metric, pro-
is provided by the user. Two things must happen in order to trigger viding more guidance to SREs about where their problem might be

Tritium’s analysis. First, a new microservice rollout must occur, and (e.g., via R? or systematic checking via CI). (b) Otherwise, add/use

WoC '21, December 6, 2021, Virtual Event, Canada

telemetry data from the new rollout service as predictors for causal
impact. If predictions are now accurate/significantly improve with
data from new rollout, the rollout likely caused the issue.
Cluster Visualization: The cluster visualization component of

Tritium complements the fault diagnosis and provides additional diag-

nostic information for SREs. It consists of the following data views:

1. Timestamped Topology View: This view will show a graphical
representation similar to that of Kiali [10] of the cluster’s topol-
ogy, with vertices representing nodes, podsZ, containers, services,
etc. and different edges representing the relationships between
them (scheduled on, runs, targets, owns, etc.). In the snapshot
view, it will display the state of the cluster at a given time. In the
delta view, it will indicate the topological differences in the cluster
between two given time points (e.g., the addition or removal of
any pods or containers). These views will allow SREs to see how
the cluster changes when something goes wrong. See Figure 2 for
examples of this view.

2. Time-series View: This view is similar to that provided by Prometheus,

allowing SREs to observe all telemetry data. It is useful for seeing
changes in the system state not reflected in the topological data.

3. Event View: This view provides a timeline of Kubernetes events.
It is primarily useful when used in conjunction with the topology
view or the time-series view, so SREs can see when topology
changes or metric spikes co-occur with events.

We envision that a master time selector will control the time in-
tervals for these views. All three will have a multitude of filtering
options (time filtering, event type filtering, vertex type filtering, time-
series filtering, etc.) to hone in on the exact layer or area of the cluster
SREs want to know more about. We plan to add visual indicators
of fault diagnosis hypothesis into these views (highlighting vertices,
specific metrics, etc.) and surface the hypotheses themselves as part
of the Ul For example, a hypothesis might be: the rollout in service
X at time ¢ caused the increased latency of upstream service Y. To-
gether, Tritium’s fault diagnosis and visualization tools will form
an extremely powerful system for both fault diagnosis and general
cluster understanding.

4 TRITIUM USE CASES

This section outlines a few specific use cases to demonstrate the utility
of Tritium. Tritium can be configured to provide information about
any SLO. In our experiments, we focus on request latency, which is an
important operational metric. When the request latency of a front-end
service increases, many downstream services could be responsible
for this increase. Tritium could be used in this scenario to identify the
downstream service at fault. The topology data collected from Jaeger
traces allows Tritium to hone in on the downstream services that could
potentially be causing the issue. Then, Tritium can use the metric and
event data to run causal impact analysis and determine if changes in
downstream latency explain the latency spike in the upstream service.

Another situation in which Tritium could be useful is if a service
experiences latency increase due to memory or CPU pressure on its
node. In this situation, it is not necessarily a downstream service that
would be at fault. If a service whose pods are co-located on the service
of interest’s node experiences increased memory/CPU consumption,

ZA pod is group of one or more containers; it is the smallest deployable unit of computing
that one can create and manage in Kubernetes.

Sadie Allen, Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, and Ayse K. Coskun

SLO: request latency

ons_"avﬂ_senncU[ts-route-service]»[ts-route-mongo]
[(s-ticketino-service|—| ts-basic-senvice s-stat st ’
ts-travel-service L

Figure 3: A subset of the call graph for the Train Ticket applica-
tion relevant to our experiments. Our SLO is the latency of the
upstream service ts-travel-service, and we roll out new versions
of ts-station-service.

Rollout(s) occur in
ts-station-service

this could starve the service of resources, causing increased latency.
Again, this is where the topology information collected by Tritium
becomes advantageous. In addition to knowing which services are
downstream of the service of interest, the data collected from the
Kubernetes API includes physical relationships between nodes, pods,
and services. This information tells Tritium which services are co-
located on the same machine. When an SLO violation is detected, the
metric data from these services are added to the search space for fault
diagnosis. We can then see if a rollout of a co-located service causes
an increase in memory or CPU usage that is related to the latency
increase of the service of interest.

S DESIGN OF TRITIUM

In this section, we provide more details on several of the technical
design components of Tritium.

Detecting Change Points in Time-series Metrics: Tritium’s fault
diagnosis system does not trigger unless anomalous behavior is de-
tected in an SLO. We have looked into several methods to detect
major shifts in time-series behavior. A threshold-based method is
undesirable because SREs may not have a specific threshold in mind
that would be unacceptable for a metric to pass. Also, in situations
where a metric spikes, but is not quite above the threshold, SREs may
still want to determine the cause of the spike. Instead of determining
individual thresholds for each SLO, we use the augmented Dickey-
Fuller test. Alternatives non-threshold methods such as Pelt search
or the binary segmentation method could also be used.

Determining Predictor Metrics: Prometheus collects hundreds
of different metrics. We need to devise a method to determine the best
predictor metrics for a given SLO in a healthy system state. We use
Pearson correlation to this end. Given a particular metric, we start with
all metrics collected from the service/pod/container related to said
metric. From this list, we calculate the Pearson correlation of the SLO
with each. We then use all the metrics that have a Pearson correlation
> 0.60, a cutoff that indicates a significant relationship between the
time series. This process tends to yield 10-20 metrics (see section 6
for examples of correlated metrics). The benefits of this methodology
are: (1) it works for any SLO, (2) one could then selectively collect
highly correlated metrics to save on running time, and (3) one can
tune it to obtain a certain number of metrics by raising or lowering
the correlation threshold or taking the top k correlated metrics.

Causal Impact Analysis: To infer causal relationships, we utilize
Google’s causal impact algorithm [2]. While this algorithm was orig-
inally designed for applications in econometrics (inferring the causal
impact of market interventions on outcome metrics such as sales),

Tritium: A Cross-layer Analytics System for Enhancing
Microservice Rollouts in the Cloud

Table 1: Varying load schedule for experiment 2

H Load Starttime Duration # of workers H

1 0 20 10
2 3 2 1
3 6 2 3
4 13 2 2
5 16 2 3

we realized it had ample relevance to the fault diagnosis problem.
The causal impact algorithm fits a Bayesian structural model on past
observed data to make predictions about what future data would look
like. This “historical” data is the time-series behavior before some in-
tervention (in our case, a microservice version rollout). The algorithm
then compares the counterfactual (predicted) data against what is actu-
ally observed to draw statistical conclusions. This algorithm is better
suited to the rollout fault diagnosis problem compared to other causal
inference methods such as Granger causality[6] because it allows you
to specify an event time/change point and analyze the effect of that
event as opposed to just modeling one time-series based on another.
Rollback Hypothesis Testing: If the causal impact analysis sug-
gests that a downstream rollout is indeed at fault for an SLO violation,
it is desirable to be able to verify this suggestion. We suggest auto-
mated rollback as a way to do this. We can use the Istio service mesh
to roll back the culprit microservice and then observe the effect of this
action on the state of the SLO. If rolling back the new version fixes
the issue, it confirms that our rollout candidate caused the problem.

6 EXPERIMENTAL RESULTS

To verify our approach, we performed two experiments on a cluster
running the Train Ticket benchmark of microservices. Each experi-
ment acts as proof-of-concept for a different aspect of Tritium’s design.
In both experiments, we focused on latency of the ts-travel-service as
our SLO. We correlated hundreds of metrics with the SLO and chose
14 with correlation coefficients >0.6. Examples of highly correlated
metrics included container memory usage and request volume.

Experiment 1. Constant Load, Delayed Service: In this experi-
ment, we establish that our approach can identify a rollout as a cause
of increased latency in an upstream service provided the application
is under constant load.

We induce a constant load of 10 concurrent workers on the Train
Ticket application (get request to the ts-travel-service) for 20 minutes.
10 minutes in, we roll out a new version of ts-station-service in which
a 100ms delay has been injected. We then aim to detect the effect of
this injected latency on the upstream ts-travel-service latency. The
call graph for the subset of the Train Ticket application relevant to our
experiments is shown in Figure 3.

Experiment 2. Varying Load, Delayed Service: We establish
that our approach can identify rollout as a cause of increased latency
in an upstream service provided the application is under varying load.

This experiment is a slightly more challenging version of experi-
ment 1. Like the first experiment, a new rollout is deployed 10 minutes
into the experiment. However, throughout the experimental period,
the number of workers inducing a load on the application varies
according to Table 1 (start time and duration given in minutes).

WoC '21, December 6, 2021, Virtual Event, Canada

Causal impact results for experiment 1

100
o o No downstream -=- Predicted
[- L
= os| Mmetric predictors
g
=
‘(h-‘ 5\025
B ,S'C_-! 000
NS g —y
T O -~~~ Predicted
L2 o =
5% 0ol With downstream
Zo metric predictors

-20

0 50 100 150 200
Time (intervals of 5 seconds)
Causal impact results for experiment 2

015 — v No downstream
= o] e \ metric predictors
§ 005 s [\ 4 B —
‘J; 2 000 !
% g—oos
NE& =y With downstteam
T @ -=- Predicted . A
= 5. metric predictors
£ os i A
S
Z o 00

SIO 7‘5 100 12‘5 15’0
Time (intervals of 5 seconds)

Figure 4: Results from causal impact analysis. The top graphs
in each subfigure show predictions when no downstream metric
data are included as predictors, and the bottom graphs show
predictions with the downstream data.

We performed experiments on a 12-node Kubernetes cluster (each
node with 8 cores and 64GB memory) running the Train Ticket bench-
mark microservice application. We recorded metric and event data
during 20 minute periods. 10 minutes in, we rolled out a new version.
‘We then ran causal impact on the period pre- and post-rollout time
intervals to determine if the rollout was at fault for increased latency
in an upstream service. Figure 4 shows results for both experiments.

In experiment 1, we see Tritium does a poor job predicting the
behavior of ts-travel-service latency before we add predictors from
the new rollout service. The causal impact package is 100% sure that
an external event has influenced the behavior of our SLO. Then, when
we provide telemetry data from ts-station-service, we see an improve-
ment in the prediction (the true behavior of ts-travel-service latency
is within the margin of error of our prediction). The likelihood that an
external event has influenced the upstream latency decreases to just
50.65%. A confidence of 95% is typically desired to say an external
event has influenced SLO behavior, so providing the downstream
telemetry data puts the confidence far below this level.

A similar result is seen in experiment 2. Initially, Tritium estimates
the probability that an external event is responsible for changes in
ts-station-service latency as 93.41%. After including data from the
downstream rollout, this drops to 74.53%. The noise of the varying
request volume makes the difference smaller, but it is still clear that the
rollout helps improve the predictions of the upstream service latency.

In these experiments, we see promising results regarding the ef-
ficacy of our approach. Even in noisy environments, we are able to

WoC '21, December 6, 2021, Virtual Event, Canada

determine that downstream rollouts affect our SLO. We believe these
early results are promising indicators for Tritium’s feasibility.

7 DISCUSSION AND OPEN QUESTIONS

One open problem in Tritium is determining the exact methodology to
construct the topological graph, specifically the call-graph component.
The physical relationships can be updated based on event monitoring
(e.g., Pod Deleted/Pod Created events), but as the service relationships
are collected from traces, which are generated frequently, it is not prac-
tical to look at every trace and update the call graph accordingly. Also,
in the event where anomalous, potentially fault-indicative paths are ob-
served, should the call graph be updated? One option is to query traces
once at system start and then periodically check for changes. Alterna-
tively, Tritium could leverage event monitoring and check for changes
in the call graph whenever there is a change in the physical topology.

One may also experiment with the window lengths for causal im-
pact analysis to see if there is an optimal length that yields clearer re-
sults. If the windows are too long, we run the risk of additional system
noise making the diagnosis problem more difficult, but shorter win-
dow lengths may not provide enough data for statistical confidence.

There is also the question of finding the optimal “alternative hy-
pothesis testing” methodology in the event that arollout is ruled out as
the cause of an SLO violation. As previously discussed, the main re-
sult from Tritium’s fault diagnosis is the answer to the yes/no question:
is a given downstream rollout responsible for the change in a SLO? If
the answer to this question is no, we want to provide as much informa-
tion to SREs as possible about what else could be causing the problem.
One potential idea is to determine the best predictor among the initial
predictor metrics. We could use correlative methods to see which of
the predictors is most correlated with the SLO during the anomalous
behavior, or run several causal impact experiments with one predictor
ata time and see which one performs the best. Another option is to use
an explainable Al engine such as SHAP [14] or LIME [20] to assist.

There are also open questions surrounding the hypothesis testing
via rollback. Is it better to do a partial or complete rollback? Could
the policy depend on the confidence of the causal impact results? An-
other avenue to consider that has been explored in previous work [5]
would be auto-scaling of resources (CPU or memory) in response to
SLO violations attributed to bottlenecks in those resources. Such a
strategy would be a counterpart to automatic rollbacks when a metric
is determined to be at fault.

8 CONCLUSION

Making sense of the vast amounts of data generated by microservices
to identify causes of performance issues is difficult. We introduce
steps toward designing a fault diagnosis and visualization system
that utilizes cross-layer data to link SLO violations to rollouts. We
demonstrate promising results that Tritium’s fault diagnosis system is
capable of establishing causal relationships between SLO violations
and the downstream rollouts responsible.

Acknowledgments: We would like to thank our reviewers for their feedback on this

work. This research is partially supported by IBM Thomas J. Watson Research Center.

REFERENCES

[1] bookinfo [n. d.]. Bookinfo. https://istio.io/latest/docs/examples/ bookinfo/.
[2] Kay H. Brodersen, Fabian Gallusser, Jim Koehler, Nicolas Remy, and Steven L.

Scott. 2015. Inferring causal impact using Bayesian structural time-series models.

3

(4]

[5

[6

[7

(8]
91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Sadie Allen, Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, and Ayse K. Coskun

Annals of Applied Statistics 9 (2015), 247-274.

Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. Causelnfer: Automatic
and distributed performance diagnosis with hierarchical causality graph in
large distributed systems. In IEEE Conference on Computer Communications
(INFOCOM). 1887-1895. https://doi.org/10.1109/INFOCOM.2014.6848128
Gerry Gerard Claps, Richard Berntsson Svensson, and Aybiike Aurum. 2015. On
the journey to continuous deployment: Technical and social challenges along the
way. Information and Software technology 57 (2015), 21-31.

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and
Christina Delimitrou. 2019. Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices. In 24th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 19-33. https://doi.org/10.1145/3297858.3304004

Clive Granger. 1969. Investigating Causal Relations by Econometric Mod-
els and Cross-Spectral Methods. Econometrica 37, 3 (1969), 424-38.
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:37:y:1969:1:3:p:424-38
Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li, Huai Jiang, Dan
Ding, Tao Xie, and Liangfei Su. 2020. Graph-Based Trace Analysis for
Microservice Architecture Understanding and Problem Diagnosis. In 28th
ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE). 1387-1397.
https://doi.org/10.1145/3368089.3417066

istio [n. d.]. Istio service mesh. https://istio.io/.

Jaeger [n.d.]. Jaeger: open-source, end-to-end distributed
https://www.jaegertracing.io/. https://www.jaegertracing.io/

tracing.

kiali [n.d.]. Kiali, Service mesh management for Istio. https:://kiali.io/.
https:/kiali.io/
KubernetesFailures [n.d.]. Kubernetes Failure Stories.

https://github.com/hjacobs/kubernetes-failure-stories.
hjacobs/kubernetes- failure-stories
KubernetesProduction [n.d.]. Kubernetes: Production-Grade Container
Orchestration. https://kubernetes.io/. https://kubernetes.io/

John Langford, Lihong Li, and Alex Strehl. 2007. Train Ticket : A Benchmark
Microservice System. http://hunch.net/~vw/

Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In 31st International Conference on Neural Information Processing
Systems (NIPS). 4768-4777. http://papers.nips.cc/paper/7062-a-unified-approach-
to-interpreting-model-predictions.pdf

Chen Luo, Jian-Guang Lou, Qingwei Lin, Qiang Fu, Rui Ding, Dongmei Zhang,
and Zhe Wang. 2014. Correlating Events with Time Series for Incident Diagnosis.
In ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

Leonardo Mariani, Cristina Monni, Mauro Pezzé, Oliviero Riganelli, and Rui Xin.
2018. Localizing Faults in Cloud Systems. In I[EEE 11th International Conference
on Software Testing, Verification and Validation (ICST). 262-273.

Prometheus [n. d.]. Prometheus. https://prometheus.io/. https://prometheus.io/
Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Rav-
ishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-Oriented Microservices. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX Association,
805-825. https://www.usenix.org/conference/osdi20/presentation/qiu

Juan Qiu, Qingfeng Du, Kanglin Yin, Shuang-Li Zhang, and Chongshu Qian. 2020.
A Causality Mining and Knowledge Graph Based Method of Root Cause Diagnosis
for Performance Anomaly in Cloud Applications. Applied Sciences 10, 6 (2020).
https://doi.org/10.3390/app10062166

Marco Tilio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should
I Trust You?": Explaining the Predictions of Any Classifier. CoRR abs/1602.04938
(2016). arXiv:1602.04938 http://arxiv.org/abs/1602.04938

Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xi-
aofeng He, Min Li, and Wei Ding. 2019. ?-Diagnosis: Unsupervised and
Real-Time Diagnosis of Small- Window Long-Tail Latency in Large-Scale
Microservice Platforms. In the World Wide Web Conference (WWW). 3215-3222.
https://doi.org/10.1145/3308558.3313653

Jorg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia, Ruichuan
Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve: Actionable
Insights from Monitored Metrics in Microservices. CoRR abs/1709.06686 (2017).
arXiv:1709.06686 http://arxiv.org/abs/1709.06686

A. Traeger, I. Deras, and E. Zadok. 2008. DARC: Dynamic Analysis of Root
Causes of Latency Distributions. In International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). 277-288.

Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. 2020. MicroRCA: Root
Cause Localization of Performance Issues in Microservices. In IEEE/IFIP Network
Operations and Management Symposium (NOMS).

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei Liu, Qilin Xiang, and
Chuan He. 2019. Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 683-694.

https://github.com/

https://doi.org/10.1109/INFOCOM.2014.6848128
https://doi.org/10.1145/3297858.3304004
https://EconPapers.repec.org/RePEc:ecm:emetrp:v:37:y:1969:i:3:p:424-38
https://doi.org/10.1145/3368089.3417066
https://www.jaegertracing.io/
https://kiali.io/
https://github.com/hjacobs/kubernetes-failure-stories
https://github.com/hjacobs/kubernetes-failure-stories
https://kubernetes.io/
http://hunch.net/~vw/
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://prometheus.io/
https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.3390/app10062166
https://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938
https://doi.org/10.1145/3308558.3313653
https://arxiv.org/abs/1709.06686
http://arxiv.org/abs/1709.06686

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 The Vision for Tritium

	2 Design Challenges
	3 System Vision
	4 Tritium Use Cases
	5 Design of Tritium
	6 Experimental Results
	7 Discussion and Open Questions
	8 Conclusion
	References

