
Iter8: Online Experimentation in the Cloud
Mert Toslali
Boston University
toslali@bu.edu

Srinivasan Parthasarathy
IBM Research

spartha@us.ibm.com

Fabio Oliveira
IBM Research

fabolive@us.ibm.com

Hai Huang
IBM Research

haih@us.ibm.com

Ayse K. Coskun
Boston University
acoskun@bu.edu

ABSTRACT

Online experimentation is an agile software development
practice that plays an essential role in enabling rapid inno-
vation. Existing solutions for online experimentation in Web
and mobile applications are unsuitable for cloud applica-
tions. There is a need for rethinking online experimentation
in the cloud to advance the state-of-the-art by considering
the unique challenges posed by cloud environments.

In this paper, we introduce Iter8, an open-source system
that enables practitioners to deliver code changes to cloud
applications in an agile manner while minimizing risk. Iter8
embodies our novel mathematical formulation built on on-
line Bayesian learning and multi-armed bandit algorithms
to enable online experimentation tailored for the cloud, con-
sidering both SLOs and business concerns, unlike existing
solutions. Using Iter8, practitioners can safely and rapidly
orchestrate various types of online experiments, gain key in-
sights into the behavior of cloud applications, and roll out the
optimal versions in an automated and statistically rigorous
manner.

CCS CONCEPTS

• Computer systems organization → Cloud comput-

ing; • Software and its engineering→ Software testing

and debugging; Empirical software validation; Soft-
ware evolution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486984

KEYWORDS

performance, distributed systems, online experimentation,
multi-armed bandit

ACM Reference Format:

Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang,
and Ayse K. Coskun. 2021. Iter8: Online Experimentation in the
Cloud. In ACM Symposium on Cloud Computing (SoCC ’21), Novem-
ber 1–4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3472883.3486984

1 INTRODUCTION

Motivation. In our digital economy, organizations across all
industries must deliver new software faster and with better
quality to adapt to new demands and opportunities so as to
remain competitive. Not surprisingly, we have been witness-
ing an increasing adoption of agile software development
practices, including continuous deployment [8, 33, 58, 63] and
online experimentation [1, 2, 5, 11, 22, 26, 31, 49, 55, 69].

In the traditional sense, online experimentation is a tech-
nique employed to test assumptions about or gain insights
into the value delivered by new application versions exposed
to users in production, aiming to identify the version that
produces the best user experience or the highest revenue.
Concretely, to solve this problem, practitioners use A/B or
A/B/n tests, which entail: (1) deploying two or more com-
peting versions of an application, with different features or
configurations; (2) splitting users across versions; (3) col-
lecting metrics related to user engagement and/or business
results (e.g., conversion rate); and (4) determining, based
on the data, which version is the best. Online experimenta-
tion of Web and mobile applications (i.e., code running on
browsers or mobile devices) is widely adopted, supported
by mature solutions [22, 55, 69], and has been extensively
studied [1, 2, 22, 25, 26, 31, 49, 51, 55, 59, 60, 75].
Unfortunately, no study to date has investigated online

experimentation of cloud applications (i.e., code running in
the cloud), even though cloud applications directly affect
user experience and business results. For example, Ama-
zon reported that every 100 ms of latency costs them 1% in
sales [19], and Google reported early on that an extra 500ms

https://doi.org/10.1145/3472883.3486984
https://doi.org/10.1145/3472883.3486984

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

in search results generation had significantly decreased user
satisfaction, dropping user traffic by 20% [52]. Cloud appli-
cations’ behavior is inherently volatile due to performance
bugs, resource contention, and infrastructure-related failures,
all of which can conflate with user experience and business
results [4, 19, 24, 35, 38, 52].
We argue that existing solutions (and their underlying

mathematical formulation) for online experimentation in the
Web and mobile domains are unsuitable for cloud applica-
tions. Furthermore, and perhaps as a result, the deployment
of cloud applications is an art, when contrasted with the
scientifically inspired approach adopted in the Web and mo-
bile domains. In particular, when deploying to the cloud,
organizations aiming to be more agile resort to automation
solutions that focus on the narrow problem of progressive
rollout of a new application version, such as Flagger [23] and
Argo Rollouts [6]. These systems, popular in the cloud-native
computing community, gradually expose a newly deployed
cloud application version to more user traffic while checking
(in an ad hoc manner) if it satisfies acceptance criteria based
on performance and correctness metrics—typically, latency
and error rate. Although these systems can prevent a mal-
functioning or slow version from being fully deployed by
rolling it back if needed, they lack the mathematical sophisti-
cation necessary to assess and compare application versions,
let alone optimize for business-oriented metrics.
The number of organizations (across many industries)

releasing cloud applications at least once a week has been in-
creasing [13], yet practitioners lack proper solutions to plan
and automate new code releases methodically to optimize
for business metrics under acceptable performance behavior.
Thus, there is a need to rethink online experimentation for
the cloud era, study it, and provide a practical solution to
this timely problem.
Our work. In this paper, we introduce Iter8 [37], a system
for online experimentation of cloud applications. Critically,
Iter8 embodies our novel mathematical formulation devised
specifically to tackle four key challenges posed by online
experimentation in the cloud domain. First, cloud applica-
tions are expected to satisfy Service-level Objectives (SLOs),
typically expressed in terms of performance and correctness
metrics, such as tail latency and error rate. Therefore, in
addition to considering a business metric to compare com-
peting versions, as done in the Web and mobile domains, an
experimentation system comparing multiple cloud applica-
tion versions needs to factor in the SLOs promised to the
users as well. Iter8 enables experiments with the following
type of goal: Among all versions satisfying SLOs, find the one
that maximizes revenue (or user engagement). Iter8’s online
Bayesian learning algorithm convolves the Key Performance
Indicators (KPIs) of interest (from the SLO specification) and

a business reward metric to be maximized when comparing
and assessing competing versions of a cloud application.

Second, the cloud domain provides a challenging opportu-
nity for an online experimentation system: APIs for changing
programmatically how user traffic is split across cloud appli-
cation versions. In traditional experiments in the Web and
mobile domains, the distribution of users across competing
versions is decided a priori by a practitioner and fixed for the
entire experiment duration. Differently, Iter8 automatically
adjusts the user traffic across competing cloud application
versions, as more data becomes available for version assess-
ments. As a result, a Iter8 practitioner can specify an exper-
iment with the following goal: Among all versions satisfying
SLOs, gradually roll out the winner version, while discovering
it, so that revenue (or user engagement) is maximized in the
process. Iter8’s novel multi-armed bandit algorithm—PBR
(Probabilist Bayesian Routing)—intelligently adjusts the user
traffic split at each iteration of an experiment so that com-
peting versions are explored with the goal of maximizing
business reward during the experiment, while satisfying SLOs.
This approach can be thought of as “earning as you learn
about your versions.” Furthermore, a variant of our PBR al-
gorithm (PBR-split) enables practitioners to have Iter8 find
the best version more quickly, when the goal is ending as
fast as possible with the best version identified.
Third, practices not directly related to business metrics,

such as canary releases (with or without progressive rollout)
and dark launches, are common in the cloud domain. We
frame such practices as online experiments where the goal
revolves around validating experimental versions against
SLOs. For instance, in Iter8, a canary release experiment
with progressive rollout has two competing versions—the
current version and the canary version. Iter8 assesses the
canary version based on the SLOs and progressively exposes
more users to it as more data becomes available, provided
the canary consistently meets the SLOs. In the end, all users
will see the canary version if it is validated; otherwise, all
users will see the current version. Practitioners benefit from
Iter8’s statistically rigorous analysis (Bayesian learning) of
the KPIs of interest during the experiment, as opposed to
settling for the ad hoc approaches used by popular solutions
in the cloud-native community.

Fourth, a cloud experimentation system must exhibit two
fundamental properties: accuracy and repeatability. Accu-
racy means producing the correct experiment outcome. Satis-
fying both properties requires statistical rigor to (1) interpret
the data properly, (2) be resilient to high variance due to
cloud noise, and (3) avoid deciding prematurely on a win-
ner version. Iter8’s version assessments and traffic split
decisions are based on statistically rigorous analysis of data
accumulated throughout an entire experiment.

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Our evaluation starts by studying Iter8’s accuracy in the
context of canary releases. Overall, we show that canary re-
leases orchestrated by Iter8 result in correct outcomes 93% of
the time, with an F1-score of 0.95. In contrast, the most popu-
lar systems for cloud-native canary releases and progressive
rollouts, Flagger [23] and Argo Rollouts [6], achieve an ac-
curacy of 55% and 53%, respectively. We then study Iter8’s
ability to maximize business reward (in A/B and A/B/n roll-
outs) by comparing our PBR algorithmwith a state-of-the-art
multi-armed bandit algorithm named Exp3 [16], as well as
with the most popular strategy used in traditional A/B and
A/B/n tests, represented by an algorithm that splits the traf-
fic uniformly—UNIF [39, 59]. Our overall results reveal that
Iter8 outperforms Exp3 and UNIF in terms of cumulative av-
erage reward by 6% and 8%, respectively. More importantly,
Iter8 keeps the user traffic to the optimal version 93% of
the time cumulatively, whereas Exp3 does so only 33% of the
time. We also investigate Iter8’s behavior when the online
experiment goal is identifying the best competing version as
quickly as possible, rather than maximizing business reward.
To do so, we compare our PBR-split algorithm against Exp3
and UNIF and observe that Iter8 finds the best version with
significantly fewer requests (served by the cloud application
versions): Iter8 delivers a speed-up (in the number of re-
quests) of 56% over Exp3 and 59% over UNIF to reach a 99%
confidence level.
Summary. Our contributions are as follows:
• We design and implement Iter8, a first-of-its-kind system
for online experimentation of cloud applications.

• We devise and propose a model that enables practitioners
to craft and perform a wide variety of online experiments
of cloud applications with a broad range of goals.

• We propose a novel mathematical formulation built on
online Bayesian learning and our new multi-armed bandit
algorithms (PBR and PBR-split) to enable online experi-
mentation tailored for the cloud, considering both SLOs
and business concerns, unlike existing solutions.

• We present extensive results evaluating Iter8.
• We make Iter81 available as open source to the cloud
community.

2 BACKGROUND AND RELATEDWORK

Online experimentation on Web and Mobile. The liter-
ature on online experimentation of Web and mobile appli-
cations (represented by A/B testing) is vast. Some of these
works have studied A/B testing and reported on its benefits
to business results and development agility from firsthand
experience [21, 44, 45, 73], whereas many others proposed
new techniques. Many of these techniques rely on statisti-
cal hypothesis testing and multi-armed bandit algorithms to

1Software available from https://iter8.tools.

dynamically change how users are split across competing
versions [1, 2, 22, 25, 26, 31, 49, 51, 55, 59, 60, 69, 75].

However, no technique previously proposed takes into ac-
count SLOs when comparing versions and adjusting the user
distribution dynamically during an experiment. In contrast,
Iter8 enables experimenters to express SLOs that must be
met, in addition to a business reward metric to be maximized,
while it changes the user distribution to explore and exploit
competing versions. Addressing the common need for cloud
applications to meet SLOs is critical; failing to do so can
hurt an organization’s reputation, affect users’ experience,
and reduce revenue [19, 44, 52]. In our novel mathematical
formulation, SLOs are stochastic feasibility constraints.
Agile practices and live testing in the cloud. Over the
past two decades, enterprises have embraced a cultural shift
to deliver code faster, as theymove to the cloud and agile soft-
ware development methodologies and tools mature [8, 33].
At the same time, a myriad of companies were born in the
cloud era and helped accelerate the creation of an ecosystem
of tools for agile cloud-native development [6, 14, 23, 68, 79].
The tools from the cloud-native computing community clos-
est to our work are Flagger and Argo Rollouts, used for au-
tomating the progressive rollout of cloud applications. Flag-
ger and Argo Rollouts assess a new version as it is rolled out,
but do so in an ad hoc manner. In our extensive evaluation,
we compare Iter8 with these tools (§6.1).

A few scientific publications have studied how practition-
ers use agile practices and live testing (A/B testing, canary
releases, and dark launches) for cloud applications in the
field [12, 58, 63, 66]. The cloud literature and practition-
ers equate A/B testing with mechanisms for splitting users
across versions. However, as done in the Web and mobile
domains, A/B testing encompasses both splitting users and
comparing the competing versions to identify the one that
maximizes business reward. Our work solves the A/B testing
(and A/B rollout) problem for cloud applications.

Other prior works have proposed solutions to improve
live testing [20, 48, 64, 74]. CanaryAdvisor [74] validates
canary releases by checking performance and correctness
metrics, whereas the work of Ernst et al. [20] focused on
reducing the interference of canaries in the production in-
frastructure. More broadly, Schermann et al. [64] introduced
Bifrost, a Domain-specific Language to model the specifica-
tion of live testing strategies and a runtime for automating
them. Similar to Flagger and Argo Rollouts, and unlike Iter8,
these works lack statistical rigor for comparing and assessing
competing versions accurately. WSMeter [48], on the other
hand, is a statistical model to evaluate the performance of a
collection of live heterogeneous jobs running on a massive
production hosting environment. WSMeter defines a holistic
performancemetric to capture the overall performance of the
entire environment, considering a wide variety of unevenly

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

distributed jobs. WSMeter’s approach and target problem
are orthogonal to Iter8’s.
Machine Learning (ML) model selection. Like cloud ap-
plications, ML models evolve and are versioned; hence, the
emergence of systems for serving ML models in the cloud
and research on model selection is not surprising. For exam-
ple, Clipper [16] uses a multi-armed bandit algorithm named
Exp3 [7] to dynamically change the user distribution across
competing model versions while identifying the best ver-
sion. Given Exp3’s theoretical guarantees and practicality,
we use it as one of our baselines for comparison with Iter8’s
algorithms (§6.2 and §6.3). Unlike Iter8, Exp3’s underlying
mathematical formulation does not consider SLOs.
Data-driven software development. The emerging role
of data scientists in product teams [41] helps foster a data-
driven development culture, which underlies online experi-
mentation. Begel and Zimmermann [10] conducted surveys
to understand software engineers’ view on how data scien-
tists can help them, and Cito et al. [12] interviewed software
engineers to study development and operations changes
created by cloud applications. These studies revealed that
developers focus mostly on operational metrics (e.g., latency)
to measure the quality of cloud applications, and are increas-
ingly looking at business metrics (related to revenue and user
engagement); however, the difficulty of interpreting the data
to make informed decisions is an overarching concern. The
surveyed engineers also expressed the importance of test-
ing cloud applications in production without compromising
performance by rolling back functionality if needed.
Iter8 addresses these concerns. It enables developers to

automate the process of (1) interpreting performance and
business metrics combined, (2) assessing and comparing com-
peting cloud application versions, (3) identifying the best
one, and (4) gradually rolling it out, all the while maximizing
business outcomes and satisfying performance SLOs.
Offline testing. Some works advocate solutions for assess-
ing the quality of cloud applications in offline test environ-
ments, isolated from production, by introducing automated
benchmarking stages in continuous delivery pipelines and
attempting to generalize the creation of benchmarks [27, 28].
Others propose solutions to emulate the complexity of large
production environments to assess and improve its overall
reliability (e.g., [50]). These techniques are orthogonal to
and can coexist with Iter8. Online experimentation is not in-
tended to replace offline tests (e.g., unit and integration tests).
Instead, we see Iter8 experiments as additional safeguards
for deploying new versions to production, while ensuring
that SLOs are satisfied and reward is maximized. In addi-
tion, Iter8 can work with traffic engineering mechanisms,
like traffic mirroring (shadowing), enabling users to assess
versions in a staging environment using live traffic [37].

3 ITER8

In this section, we describe how Iter8 orchestrates online
experiments for cloud applications, the types of experiments
it supports, and its design and implementation.

As shown in Figure 1, a practitioner starts an experiment
by creating an experiment spec, which declares the applica-
tion and competing versions, SLOs (e.g., limits on tail latency
and error rate), a reward metric (e.g., mean revenue), and
the experiment’s duration. Iter8 configures the initial user
traffic split across versions (e.g., 5% to v1 and 95% to v2)
using the underlying cloud platform’s API. As the versions
receive user traffic, observations of KPIs (e.g., latency and
error rate) and reward are collected and stored in a telemetry
database. Iter8 periodically queries the database to build
belief distributions for version-KPI and version-reward pairs
(§4). As the experiment proceeds and more data is available,
the belief distributions converge to the true values of the
KPIs and reward. At each experiment iteration, Iter8 ad-
justs the user split across the competing versions using its
traffic shifting algorithm (§5), taking into account the belief
distributions and SLOs. At each iteration, if a version does
not meet all SLOs, its effective reward is zero; conversely,
versions satisfying all SLOs have an effective reward equal to
the observed value of the reward metric. Thus, the fraction
of users exposed to non-compliant versions decreases over
time as the fraction exposed to the most rewarding version
increases (§5). The experiment continues for its defined dura-
tion or until its goal has been achieved (e.g., winner version
found with 95% confidence), whichever comes first.

Telemetry	
database

Traffic	shifting
algorithms

Belief	
distributions

ITER8

End-user	
requests

Experimenter

Experiment	
spec

Cloud	platform

Figure 1: Iter8 overview.

3.1 Experiment spec

We now summarize the key elements of an experiment spec.
The inset below shows a simplified sample spec in the YAML
format for an A/B rollout experiment. That spec identifies
the target cloud application my-app in the namespace my-
team and two competing versions, named my-app-v1 and
my-app-v2. The spec declares two SLOs to be satisfied—the

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

95th latency percentile must be below 100 ms and the error
rate must be below 1%— and a business reward metric (mean
revenue) to be maximized. The experiment is configured to
run for 100 iterations of 30 seconds each. Under trafficCon-
trol, the spec indicates a strategy that corresponds to one of
Iter8’s two traffic shifting algorithms (§5) and sets the pa-
rameter maxIncrement to 10 so that Iter8 does not increase
the user traffic to a version by more than 10% at each itera-
tion. Following this spec, Iter8 will progressively shift the
user traffic towards the version that has the highest mean
revenue and that satisfies the SLOs on the 95th percentile of
latency and error rate.

spec:
type: A/B
target: my-team/my-app
baseline: my-app-v1
candidates:
- my-app-v2
criteria:
objectives:
- metric: 95th-latency
upperLimit: 100

- metric: error-rate
upperLimit: 0.01
rewards:
- metric: mean-revenue
preferredDirection: High

duration:
intervalSeconds: 30
iterations: 100
trafficControl:
strategy: reward-maximization
maxIncrement: 10

Iter8 supports two patterns
for splitting the user traffic
across competing versions: pro-
gressive or fixed. In the pro-
gressive pattern, shown in the
sample, the experiment spec in-
dicates a traffic control strat-
egy that translates into one
of Iter8’s traffic shifting algo-
rithms. In these scenarios, Iter8
has full control and progres-
sively shifts the user traffic to-
wards the winner version over
multiple iterations. In the fixed
pattern, the experiment spec
provides an explicit user traffic
split that remains unchanged for the entire experiment.

Next, we describe the experiment types enabled by Iter8
using our terminology for online experimentation of cloud
applications.
Canary release. This experiment involves a baseline ver-
sion, a candidate version (the canary), and SLOs. If the can-
didate is validated (i.e., it meets the SLOs), Iter8 will declare
it the winner. A canary release experiment can use either
the progressive or the fixed traffic control pattern. In the
progressive case, the traffic will shift towards the candidate
if it is validated, or towards the baseline version otherwise.
A/B rollout. An A/B rollout involves a baseline version,
a candidate version, a reward metric, SLOs (optional), and
the progressive traffic control pattern. If both versions are
validated, the version that optimizes the reward is the winner.
If only a single version is validated, this version is the winner.
If no version is validated, there is no winner. The traffic will
shift towards the winner, or the baseline if there is no winner.
A/B/n rollout. An A/B/n rollout involves a baseline ver-
sion, two or more candidate versions, a reward metric, SLOs
(optional), and the progressive traffic control pattern. The
winner of the experiment is the version that optimizes the
reward among the subset of versions that are validated. The

traffic will progressively shift towards the winner, or the
baseline version if there is no winner.
A/B test. Unlike an A/B rollout, an A/B test relies on the
fixed traffic control pattern.
A/B/n test. Unlike an A/B/n rollout, an A/B/n test relies on
the fixed traffic control pattern.
Conformance test. It involves a single version (baseline)
and SLOs. The goal is to check if that version meets the SLOs.
Traffic engineering features. Iter8 enables three traffic
engineering techniques. First, experimenters can perform
user segmentation, a technique to select a specific seg-
ment of the user population for an experiment, leaving the
remaining users unaffected. Second, during A/B, A/B/n, or
canary experiments, session affinity is often necessary to
ensure that the version to which a particular user’s request
is routed remains consistent during the experiment. Third,
the technique of traffic mirroring—replicating real user
traffic—enables experimenting with a dark-launched version
with no impact on users. Metrics are collected and evaluated
for the dark version, but end users do not see that version.

3.2 Design and implementation

Iter8 enables online experimentation of applications run-
ning on any cloud based on Kubernetes [47], which is the
technology used by many public and private cloud offer-
ings. Many platforms have been built on top of Kubernetes
to augment Kubernetes’ mechanisms for metrics collection
and extend its APIs with high-level abstractions for develop-
ers. Relevant are APIs for traffic management, which Iter8
uses to distribute users across competing versions and effect
the traffic engineering techniques explained above. Iter8
currently supports the following underlying platforms: (1)
Istio [36], the current most popular service mesh; (2) Kna-
tive [42], a platform for serverless containers and event-
driven applications; and (3) KFServing [40], a platform for
serving MLmodels on arbitrary frameworks. Architecturally,
Iter8 has two key components, which we describe next.
Iter8-controller. This component orchestrates all ongoing
experiments. It keeps track of experiments’ status, duration,
and iterations. At each iteration, Iter8-controller calls Iter8-
analytics to get an update on a particular experiment—its
status, version assessments, and the new user traffic split.
It then applies the user traffic split recommended by Iter8-
analytics using the underlying platform API. This control
loop continues until the experiment ends.
Since Iter8 is designed for Kubernetes-based clouds, we

implemented Iter8-controller as a Kubernetes controller in
Golang, following the controller pattern [15]. We extended
Kubernetes with a Custom Resource Definition (CRD) [17]
named Experiment whose structure matches our declarative
experiment spec (§3.1). To start an experiment, a Iter8 user

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

first creates a YAML file representing an Experiment CRD
instance and then submits it to the target Kubernetes cloud.
After Kubernetes creates the resource, Iter8-controller starts
the corresponding experiment.
Setting and updating the user traffic split is a platform-

dependent action. For example, Iter8 manipulates Istio’s
VirtualService and DestinationRules [76] in the Istio service
mesh, and Knative Service [77] in Knative. We designed
Iter8 for multi-platform extensibility.
Iter8-analytics. This component encapsulates our
Bayesian online learning (§4) and multi-armed bandit
traffic shifting algorithms (§5). The former builds belief
distributions for KPIs and rewards, and assesses each
competing version against SLOs, whereas the latter takes
the belief distributions and SLOs as inputs and decides how
to adjust the user traffic split across versions.

We designed Iter8-analytics as a REST API server written
in Python. At each experiment iteration, Iter8-controller
makes an HTTP call to Iter8-analytics to get updated in-
formation. To build the belief distributions, Iter8-analytics
queries the cloud platform’s telemetry database. Any teleme-
try database that enables HTTP queries can be used by Iter8.
Iter8-analytics converts the data from a telemetry-specific
format to a common internal format used by the Iter8-
controller. Currently, Iter8 supports Prometheus [56] (a pop-
ular time-series data store), Sysdig [70], and New Relic [53].

Many metrics are automatically collected by the underly-
ing platform and stored in a chosen telemetry database. For
example, the Istio service mesh collects data on latency and
error rate and can export it to Prometheus. When Iter8 is
installed, it comes with configuration for the default metrics
of the target platform. We have extended Kubernetes with a
Iter8 metric CRD to make it easier for users to enable Iter8
to work with their own custom metrics.

4 ONLINE LEARNING IN ITER8

We now present our online Bayesian learning mathematical
formulation. We first describe how Iter8 derives a multi-
variate utility function (§4.1) to convolve the KPIs (from the
SLOs) and a reward metric, which is the basis for effective re-
ward (§3). We then explain how Iter8 progressively updates
belief distributions for KPIs and reward to learn the utility
function during an experiment (§4.2 and §4.3).

4.1 Multivariate utility function

The experiment spec is represented in Iter8 as a multivariate
utility function. This serves two purposes. First, it combines
multiple KPIs into a single utility function, which is learned
and optimized online during the experiment. Second, it en-
ables ranking the competing versions, with the winner being
the version with the maximum utility.

In order to describe this function, we use the following
mathematical notation: Let X0[p] denote the reward KPI for
version p, let X1[p], . . . ,Xk [p] denote the KPIs for version
p, and let ℓ1, . . . , ℓk denote their respective SLOs. For each
j ∈ 0, . . . ,k ; X j [p] is the random variable denoting the value
of version-level KPI; E[X j [p]] denotes the expected value of
this version-level KPI. This is generally unknown to Iter8
at the experiment start and is learned online through KPI
observations. Here, ℓj is a fixed constant which is specified in
the experiment spec. For example, in the inset in §3.1, X0[p]
denotes the mean-revenue KPI, X1[p] denotes the latency
KPI of version p, and ℓ1 = 100 is the SLO on the latency.

We first define feasibility; we say that version p is feasible
if it satisfies all the SLOs provided in the experiment spec.
More formally, feasibility is defined in Eq. (1) below:

∀j ∈ 1, . . . ,k : E[X j [p]] ≤ ℓj . (1)

Iter8 then derives the utility function (ha(p)) for version
p. The utility function is presented in Eq. (2) below, where
F denotes the set of feasible versions.

ha(p) = E[X0[p]]1p∈F (2)

The intuition behind the multivariate utility function is as
follows. If the expected KPIs of a version p are within their
respective limits, ha(p) equals the expected reward of p; oth-
erwise, if even one ofp’s expected KPIs violates its limit, then
ha(p) becomes 0. We emphasize that, like the expected val-
ues E[X j [p]] of version-level KPIs, the version-level utilities
ha(p) are fixed but unknown quantities. Iter8 progressively
estimates these quantities using KPI observations.

4.2 Belief update

Iter8 associates a belief (probability) distribution with every
version-KPI pair ([p, j]) and updates these distributions peri-
odically at the end of each iteration of an experiment based
on the new batch of telemetry data. The batched updates are
a practical necessity since telemetry updates are not instan-
taneous in the real world but often happen with delays and
over batches of requests [56].

We now describe the mechanics behind belief updates us-
ing the following idealized scenario. Suppose we have a coin,
which turns up heads with probability q. Further, suppose
we do not know the true value of q, which equals 0.65. In
Bayesian inference, q as a random variable. We can model
our uncertainty about q using a prior belief distribution.
Beta(1, 1) is a reasonable prior when we start with no infor-
mation about q as it distributes q uniformly in [0, 1]. If we
toss the coin 100 times and observe 70 heads in the sample,
we can justifiably conclude the ‘true’ value of q is likely to
be close to 0.7. Formally, we use Bayes’ theorem to update

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

our belief for q to obtain a posterior distribution for q, which
is now Beta(1 + 70, 1 + 30). This is an instance of the classic
Beta-Binomial belief update model illustrated in Figure 2.

Figure 2: Beta-Binomial belief update. The true value

ofq is 0.65. The beta belief distributions on the left and

right correspond to 10 and 400 observations, respec-

tively. On the right we see less variance and a mean

closer to the true value.

Many KPIs (e.g., error rate and click-through rate) are
averages of 0/1 binary indicator random variables (e.g., 1
if the user clicked on a link). We refer to these KPIs as in-
dicator KPIs. Let experiment iteration be indexed 1, 2,
Let Betae (αe [p, j], βe [p, j]) denote the belief distribution as-
sociated with [p, j] at the start of iteration e . Iter8 uses the
Beta-Binomial belief update for indicator KPIs.
Other KPIs, such as average revenue or average latency,

may not be averages of 0/1 random variables and require a
more general approach. We refer to these KPIs as continuous
KPIs. Let j be a continuous KPI. Let aj and bj represent
the minimum and maximum possible values that can be
observed for KPI j. The distribution Betae (αe [p, j], βe [p, j])
captures the uncertainty about the normalized expectation
E[X j [p]]−aj

bj−aj
. At the start of the experiment, this distribution

is initialized to Beta(1, 1). Let Z+e−1[p, j] denote the sum of
all values observed for version p and KPI j, and letW +

e−1[p]
denote the total number of requests routed through version
p until the end of iteration e − 1. Then, the update equations
for KPI j for version p for any iteration e > 1 are as follows:

αe [p, j] = 1 +
Z+e−1[p, j] − ajW

+
e−1[p]

bj − aj
(3)

βe [v, j] = 1 +
bjW

+
e−1[p] − Z+e−1[p, j]

bj − aj
(4)

Statistical intuition behind belief update. The update
Equations (3) and (4) account for several important theoreti-
cal and practical considerations.

1) It is easy to verify that the Beta-Binomial updates for
indicator KPIs can be recovered as a special case of (3) and
(4) by setting aj and bj to 0 and 1 respectively. This is not
surprising, considering the fact that indicator KPIs are a
special case of continuous KPIs.

2) The posterior mean (i.e., the mean of the updated Beta
belief distribution) for the version-KPI pair [p, j] equals
aj+bj+Z+e−1[p, j]

2+W +
e−1[p]

. By the strong law of large numbers [18, 65],
this value approaches the true expectation E[X j [p]] almost
surely as more requests are routed through p, i.e., as the
effective sample size 2 +W +

e−1[p] → ∞.
3) The variance of a Beta distribution with parameters α

and β can be computed analytically as α β
(α+β)2(α+β+1) [18, 65].

It follows that the posterior variance of the version-level
KPI [p, j] equals (bj − aj)

2 αe [p, j]βe [p, j]
(αe [p, j]+βe [p, j])2(αe [p, j]+βe [p, j]+1)

. It
is also possible to verify that this variance goes to 0 as the
effective sample size 2 +W +

e−1[p] → ∞.
4) Iter8 can easily incorporate new version(s) deployed

in the middle of an experiment using the belief update mech-
anisms. It accomplishes this by initializing and updating the
belief distributions associated with the new version(s) as in
Eq. (3) and (4). The belief distributions for the new version(s)
will exhibit greater variance initially, and will converge to
their true expectations as more requests are routed, and KPI
observations are collected for these versions.

5) By the same token as 4) above, Iter8 can also easily
incorporate historical data on versions that were running
before the experiment began.

6) The update Equations (3) and (4) do not rely on indi-
vidual request-level KPI observations but on aggregated KPI
observations batched for each iteration. This enables Iter8
to generalize to heterogeneous cloud environments where
gathering instantaneous KPI observations is not an option,
but batched over windows of time ([34, 56]).
The belief updates in Eq. (3) and (4) are examples of ap-

proximate Bayesian computation that bypass the likelihood
functions for the KPIs (i.e., the distributions of the random
variables X j [p]) and directly estimate expectations of the
KPIs (i.e., E[X j [p]]). Several approximate Bayesian computa-
tion methods have been proposed in the literature [9, 78]. We
choose the belief update in Eq. (3) and (4) due to its simplicity
and the fact that similar update methods have been recently
shown to have provably good convergence properties [3].

4.3 Monte Carlo sampling

Given the KPI observations until now, how can we quantify
the probability of a specific version p being the optimal ver-
sion? In this section, we describe how Iter8 handles these
questions via Monto Carlo sampling [18, 65]. We start with
the procedure for creating a single utility sample for a given
version p, a key subroutine for other estimation tasks.
Utility sample for p. Recall that Betae (αe [p, j], βe [p, j]) is
associated with version-KPI pair [p, j] and represents the
posterior belief distribution for the normalized expectation
E[X j [p]]−aj

bj−aj
. We can sample a value ŷj [p] from

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

Betae (αe [p, j], βe [p, j]), and compute the value x̂ j [p] = aj +
(bj − aj)ŷj [p], which is our sample for E[X j [p]]. Similarly,
we can sample x̂0[p], . . . x̂k [p] for KPIs 0, . . . ,k respectively,
substitute them in (2) in place of the corresponding E[X j [p]]

values, and obtain a single utility sample ĥa[p] for version p.
Posterior probability of p. This quantity represents the
probability of version p being the optimal. Using the above
procedure, we create a sample utility vector that contains
a single utility sample for each version in the experiment.
Iter8 estimates the posterior probability of p by sampling a
large number of such utility vectors (e.g., 10000), and com-
puting the fraction of vectors in which p emerged as the
version with the maximum utility.

Based on the above formulation, Iter8 surfaces a variety
of useful insights from Monte Carlo sampling and Bayesian
assessment during an experiment and after its termination.
These insights include the probability of a version being
the winner (posterior probability of p), the probability of a
version improving over the baseline with respect to a given
metric, the probability of a version being the best version
with respect to a given metric, and the range of likely values
for the KPI of a version (i.e., the credible interval).

5 ITER8’S DECISION ALGORITHMS

Online experimentation presents a fundamental tradeoff be-
tween exploration of available options versus exploitation
of the option currently considered the best one. The multi-
armed bandit problem well exemplifies this tradeoff. Con-
sider a gambler who faces a slot machine with multiple arms,
each of which produces a random payout when pulled. The
gambler wishes to maximize the total payout through a se-
quence of arm pulls. Should the gambler aggressively exploit
an arm, which is the current best arm, or should the gambler
broadly explore the set of available arms (and risk losing
payout)? In Iter8, the experimenter (gambler) wishes to
maximize reward (payout) among various versions (arms).

Thompson Sampling, which chooses the arms probabilis-
tically, is a heuristic for such explore/exploit problems [75].
The Thompson Sampling algorithm provides assorted bene-
fits over classical multivariate hypothesis tests or A/B exper-
iments, both of which uniformly evaluate competing vari-
ants [59, 61]. The algorithm has strong theoretical guarantees
on how quickly it will converge to an optimal solution [3, 60].
The algorithms we develop in this paper, PBR and PBR-

split, significantly generalize the classic Thompson Sam-
pling [59, 75]. They incorporate stochastic feasibility con-
straints (SLOs), a multivariate utility function, and approxi-
mation Bayesian computation (§4). In particular, they sample
a large number of utility vectors for each competing version
using Monte Carlo sampling (§4.3). For each vector, the algo-
rithm (PBR) picks the best (or two best in PBR-split) version

according to sample utility, and marks this version as a can-
didate. In the traffic policy, the weight given to a version p
is equal to the fraction of vectors in which p emerged as the
candidate. We now discuss the behavior of our algorithms.
Reward maximization (PBR): PBR creates an adaptive
and iterative traffic policy where traffic is routed to a version
proportional to its posterior probability. As the experiment
progresses, the posterior probability of suboptimal versions
converge to 0, PBR progressively shifts traffic towards the
optimal version as desired, hence maximizing the reward
during the experiment.
Best-version identification (PBR-split): PBR-split cre-
ates a traffic policy where traffic is progressively shifted
towards the two best versions ranked by the utility. The idea
behind PBR-split is to aggressively support Iter8’s quest
to separate the truly optimal version from the second-best
version (and, therefore, all the rest). By doing so, PBR-split
sharpens posterior probabilities, hence enabling quicker iden-
tification of the best variant in an experiment.

6 EXPERIMENTAL EVALUATION

We now present a quantitative comparative analysis of Iter8.
We first assess Iter8’s accuracy, its ability to solve the reward
maximization problem, and its ability to identify the best
competing version as quickly as possible. We conduct these
experiments running two types of benchmark applications in
a public cloud—a distributed microservice-based application
and an ML model serving system. Our evaluation concludes
with simulations to study our algorithms with randomized
KPIs and an increasing number of competing versions.

We summarize our public cloud setup below. Comparison
baselines and benchmark applications are detailed in later
sections (§6.1 and §6.2).
Public cloud setup.We conduct our experiments on a 14-
node Kubernetes cluster (version 1.17.11) [47] in a multi-
tenant public cloud. Each Kubernetes worker node is a VM.
Our cluster has various worker node flavors to represent a
heterogeneous and realistic production environment. The
distributed microservice-based benchmark application runs
on 13 nodes, 4 of which have 8 CPU cores and 64 GB of
memory; the remaining nodes have 4 CPU cores and 16 GB
of memory. The ML model serving system runs on a GPU
pool with 2 Tesla P100 physical cards. Each card has 2 GPUs,
32 CPU cores, and 384 GB of memory.We use the Istio service
mesh [36] for traffic management and Prometheus [56] as
the telemetry database.
Load generation. We exercise the benchmark applications
using the hey HTTP load generator [30]. The nature of the
generated load varies depending on the experiment. We use
constant, diurnal, and unpredictable loads with spikes in user
demand similar to the methodology used in FIRM [57].

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

6.1 Accuracy

In this section, we evaluate Iter8’s accuracy. We define ac-
curacy as the ratio of correct experiment decisions over the
total number of experiments. In this definition, the term ex-
periment refers to online cloud experiments, such as canary
releases and A/B rollouts. For example, in a canary release
where the canary version is supposed to meet the SLOs, the
correct decision is to validate the canary version instead of
rolling back to the baseline.
Benchmark application. In our accuracy evaluation, we
use the Train Ticket [80] benchmark application, which is
widely used and the largest publicly available microservice-
based application. Train Ticket is modeled after a travel ticket
booking system that enables users to query the trains’ sched-
ule, reserve train tickets, and pay for them. It was designed
and implemented as a distributed application comprising
41 microservices spanning 4 programming languages, using
MySQL and MongoDB for data persistency. We chose one
microservice, named travel-service, to be subjected to online
experimentation. Among the 41 microservices, travel-service
makes the largest number of downstream calls.
Comparison baselines & methodology. We compare
Iter8 against Flagger [23] and Argo Rollouts [6], which are
the most popular solutions for automating canary releases
with progressive rollouts in the cloud-native computing com-
munity. To analyze the accuracy of Iter8, Flagger, and Argo
Rollouts, we perform canary releases on travel-service under
a variety of different situations. To create two versions (base-
line and canary) of travel-service for this set of experiments,
we modified the original code as follows. We increased the
canary’s latency based on a normal distribution with a mean
10ms, and we also made the canary version return HTTP er-
rors randomly with a probability of 0.025, while the baseline
version returns no errors. The latency and error rate metrics
are collected by the Istio service mesh; no code instrumen-
tation is needed. Table 1 shows the mean latency and error
rate for the baseline and canary versions of travel-service.
Naturally, when comparing Iter8 against Flagger and

Argo Rollouts, we use the same SLOs specification. However,
Flagger and Argo Rollouts require an additional threshold
parameter to control the total number of SLO violations that
the canary is allowed to make before they decide to roll back
to the baseline version. We use their default value of 5 for all
experiments, except in those where we vary that parameter.
Furthermore, Flagger and Argo Rollouts require the user to
explicitly set the traffic percentage increase to the canary
version at each experiment iteration. In our experiments, we
configure Flagger and ArgoRollouts to shift 10% of the user
traffic to the canary at each iteration. In Iter8, traffic-shifting
decisions are made automatically, but the user can limit the
maximum traffic increase per iteration. We configure Iter8

so that the traffic shift to the canary version is no more than
10% per iteration. All canary release experiments are config-
ured to last for 10 iterations. (Note that we use the words
step and iteration interchangeably.)

Table 1: KPIs for travel-service baseline and canary ver-

sions.

name latency (ms) error-rate
baseline 110 0
canary 120 0.025

Quantitative results. In Figure 3, we summarize the results
of our comparative accuracy analysis. Figure 3a shows the
accuracy for different values of step (i.e., iteration) duration:
0.5, 1, 2, and 5 minutes. We generate a load of 5 requests/s
for a total of 150, 300, 600, and 1500 requests per step. In
these experiments, we specify that the canary release needs
to satisfy an SLO on the mean latency KPI (≤ ℓlat = 140ms).
As mentioned earlier, the violation threshold for Flagger and
Argo Rollouts is set to the default value (if the number of
violations ≥ 5, they roll back to the baseline version).

Figure 3a reveals that Flagger and Argo Rollouts accu-
racy suffers for short iteration durations. These systems’
lack of statistical rigor is compounded by their considering
KPI observations on a per iteration basis. Shorter iterations
translate into fewer observations. In contrast, Iter8 not only
applies a statistically rigorous online Bayesian learning algo-
rithm, but it also uses KPI observations accumulated for the
entire experiment duration to learn the belief distributions.
Practitioners need to consider the number of data points

available to an online experimentation system and how it af-
fects its accuracy. For Flagger and Argo Rollouts, that number
is a function of load and step duration; for Iter8, it depends
on the load and the entire experiment duration. Note, how-
ever, that Iter8 can end an experiment as soon as the desired
level of statistical confidence is achieved, which can happen
before the configured experiment duration.

In the experiments reported in Figure 3b, we vary the SLO
on mean latency by setting the limit to 125, 140, and 160 ms.
As shown, tighter SLOs severely impact Flagger and Argo
Rollouts. This result stems from their reliance on the thresh-
old parameter to decide when to roll back, as opposed to
Iter8’s approach of making decisions based on the learned
KPI belief distributions. Figure 3c shows the impact of an ad-
ditional SLO on the error rate KPI (≤ ℓerr = 0.03). Additional
SLOs further impact Flagger and Argo Rollouts. Although
their threshold parameter is defined on a per KPI basis, the
more KPIs, the higher the likelihood that these systems will
make a decision based on a threshold violation.

Next, we increase Flagger and Argo Rollouts threshold pa-
rameter values. In Figure 3d, we show that a more permissive

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

0.5 1.0 2.0 5.0
Step duration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Req [1/s] = 5, Threshold = 5
ITER8
Flagger
Argo

(a) Varying step durations

125.0 140.0 160.0
Constraints

0.0

0.2

0.4

0.6

0.8

1.0
Threshold = 5, Step = 2m

(b) Varying SLOs

latency latency + error
KPIs

0.0

0.2

0.4

0.6

0.8

1.0
Req [1/s] = 5, Step = 2m, Threshold = 5

(c) Varying KPIs

5.0 8.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Req [1/s] = 5, Step = 2m

(d) Varying thresholds (ok ca-

nary)

5.0 8.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Req [1/s] = 5, Step = 2m

(e) Thresholds (bad canary)

0.2 1.0 5.0 10.0
Req [1/s]

0.0

0.2

0.4

0.6

0.8

1.0
Threshold = 5, Step = 2m

(f) Varying load

steady challenging
State

0.0

0.2

0.4

0.6

0.8

1.0
Threshold = 5, Step = 2m, Req [1/s] ≥ 100

(g) Steady vs challenging

Accuracy F1 Precision Recall
0.0

0.2

0.4

0.6

0.8

1.0

(h) Overall evaluation

Figure 3: Accuracy in canary releases. The accuracy results are summarized for varying step durations, SLOs,

number of KPIs, thresholds, request load, and patterns; Iter8 (in black ’⋆’), Flagger (in grey ’-’), and Argo (in

light-grey ’x’).

threshold benefits these systems’ accuracy when the canary
version is supposed to be validated. However, when the ca-
nary code is not compatible with the SLO (≤ ℓerr = 0.02),
higher threshold values lead to less accuracy, as shown in
Figure 3e. It is hard for practitioners to decide on the thresh-
old, which limits the trustworthiness of Flagger and Argo
Rollouts. Instead of relying on ad hoc threshold parameters,
Iter8 uses our Bayesian approach to analyze the KPIs and
make decisions, thereby guaranteeing statistical rigor and
reducing the users’ cognitive load.

Figure 3f shows results for different load intensities. Fewer
requests/s translate into fewer KPI observations. Therefore,
as expected, the results in Figures 3f and 3a exhibit the same
trend for the same reasons.
In Figure 3g, we study the impact of high load and high

variance. The results grouped for the label steady were ob-
tained with a constant load of 100 requests/s and permis-
sive SLOs (ℓlat = 140ms and ℓerr = 0.04). We then show
the impact of high variance under the label challenging. To
achieve high variance, we increase the original latency of
the canary version. Instead of adding a constant amount of
latency, we add latency that follows a normal distribution
with µ = 100ms and σ = 30 (similar to [57]). That brings the
canary’s mean latency to 220 ms. We also generate load with
a diurnal pattern and random spikes, and make the SLOs
more challenging (ℓlat = 225ms and≤ ℓerr = 0.03). The high
variance, unpredictable load, and tight SLOs lead to a low
accuracy of 20% for Flagger and Argo Rollouts, while Iter8
can deliver an accuracy of 80%.

Summary. Finally, the overall results (Figure 3h) from all
runs above reveal that canary releases orchestrated by Iter8
result in correct outcomes 93% of the time, with an F1-score2
of 0.95. In contrast, Flagger and Argo Rollouts achieve an
accuracy of 55% and 53%, respectively.

6.2 Reward maximization

We now evaluate Iter8’s ability to maximize business reward
during an experiment, which is the goal of A/B and A/B/n
rollouts. Neither Flagger nor Argo Rollouts supports these
scenarios. They do not even have the concept of reward. Thus,
we chose a different benchmark compatible with relevant
comparison baselines.
Benchmark application. The benchmark we use for as-
sessing Iter8’s reward maximization capability is an ML
model serving system using TensorFlow Serving [54] to serve
ML models. We use five representative and complex deep-
learning models, namely VGG-16 [67], MobileNetV2 [62],
EfficientNet-B0 [72], InceptionV3 [71], and ResNet50 [29]
(see Table 2). A front-end HTTP server receives requests,
which get routed to one of the models in the backend. An
incoming HTTP request asks a model to classify an object
from the CIFAR-100 ML dataset [46].
Comparison baselines&methodology.Not all Reinforce-
ment Learning algorithms are suitable for experimentation
with SLO criteria. Clipper [16] casts the problem of ML
2F1 is defined as the harmonic mean of precision and recall. Precision is the
ratio of true positives to the number of all canary rollouts. The recall is the
ratio of true positives to the number of all actual positives in the data set.

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

model selection as a multi-armed bandit problem and uses
the Exp3 [7] algorithm to select the best among multiple
competing ML models. We, therefore, compare Iter8’s algo-
rithms against Exp3, as well as with the most popular strat-
egy used in traditional A/B and A/B/n tests, represented by
an algorithm that splits the traffic uniformly—UNIF [39, 59].
We implement these two algorithms in Iter8 to conduct our
comparative analysis.
Exp3. This algorithm associates a weight si = 1 for each of k
models and then randomly selects a model with distribution
(d) pi = si/

∑k
j=1 sj . It observes the reward (ri) per variant,

and updates weights according to si := si ∗ exp(ri/d(i) ∗γ/k).
However, Exp3 merely considers reward; it does not take
into account SLOs. Therefore, we modify Exp3 to support
SLOs and, accordingly augment Exp3 with the concept of
effective reward, which replaces the reward in the original
heuristic outlined above. The value of the effective reward is
0 when the SLOs are not satisfied up until the current itera-
tion, preventing Exp3 from exploiting versions not satisfying
SLOs.
UNIF. UNIF [39, 59] is one of the most common strategies
for A/B and A/B/n testing in practice. It splits user traffic
equally across all competing versions to evaluate them using
statistical hypothesis testing.
Methodology.We compare Iter8’s algorithms against Exp3
and UNIF in the context of A/B/n rollout. In these experi-
ments, we have 5 competing versions represented by the
models listed in Table 2. The front-end HTTP server acting
as a proxy for the 5 models in the backend relies on an oracle
that knows the correct response to each request it receives
from the CIFAR-100 data set. When a model returns the cor-
rect response, that model’s reward is incremented; otherwise,
it remains the same. The front-end service reports the reward
for each model to the Prometheus telemetry database. Ta-
ble 2 shows the models’ mean reward and mean latency. The
latency metric is reported by the Istio service mesh without
any additional instrumentation.
Iter8 can use any application-specific metric available

in a database for reward maximization or SLO validation.
In the following ML model serving experiments (§6.2 and
§6.3), we use model accuracy as the reward metric purely for
demonstration purposes, and for comparison with exp3 [7],
which used model loss in its evaluation that is similar in
spirit. In the real world, we expect a business metric like
conversion rate or user engagement to be used as the reward.
Note that each of the 5 ML models is just like competing
versions of cloud applications. Iter8 is not meant to solve
the problem of hyperparameter tuning.
We define an SLO on mean latency (≤ ℓlat = 75ms). As

you can see in Table 2, some models do not meet that SLO.
The goal of our A/B/n rollout experiments is as follows:

Table 2: Set of deep-learningmodels used in the single

model selection experiments.

model reward latency (ms)
v1 VGG-16 0.68 133
v2 ResNet50 0.77 82
v3 InceptionV3 0.79 90
v4 MobileNetV2 0.78 66
v5 EfficientNetB0 0.82 71

Among all versions satisfying SLOs, gradually roll out the
winner version so that reward is maximized in the process.
We generate a load of 50 requests/s combined with an ad-
ditional diurnal load with random spikes. Each experiment
results in more than 50000 requests. We run 3 types of ex-
periments, each with different step durations: 10, 20, and 40
minutes. All experiments have the same duration but differ-
ent numbers of steps. All data points shown in the next set
of graphs correspond to the average of 5 runs. Unlike the
experiments described in §6.1, here we do not set Iter8’s
maxIncrement parameter that limits the amount of traffic
shift at each iteration.

Figure 4: Reward maximization. Cumulative mean re-

ward, and traffic towards optimal are shown for PBR,

PBR-split, Exp3, and UNIF. Note that (a) and (b) are

visualized zoomed-in to better demonstrate the differ-

ence between algorithms.

Quantitative results. Figure 4a shows the cumulative av-
erage reward obtained by Iter8’s two algorithms (PBR and
PBR-split), Exp3, and UNIF, and Figure 4b summarizes the
overall average rewards from all these runs. Our overall re-
sults reveal that our PBR algorithm, whose purpose is to
solve the reward maximization problem, outperforms Exp3

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

and UNIF in terms of cumulative average reward by 6% and
8%, respectively. Furthermore, PBR keeps the user traffic to
the optimal version 93% of the time cumulatively, whereas
Exp3 does so only 33% of the time, as shown in Figure 4c.
Critically, Figure 4d demonstrates that PBR converges

quickly to the optimal version.

Figure 5: SLO violations. The overall mean latency

from ML models are shown for PBR, PBR-split, Exp3,

and UNIF. Upper limit on latency (SLO) is depicted by

the red horizontal line.

Finally, Figure 5 shows the overall mean latency across all
experiments for each of the algorithms. The horizontal red
line represents the upper limit on mean latency as specified
in the SLO. PBR not only yields the highest reward during
the course of the experiments, but it also significantly out-
performs Exp3 and UNIF in meeting the SLO. Note that Exp3
does not take SLOs into account in its original form (we
extended it to consider SLOs), and neither does any other
multi-armed bandit algorithm or online experimentation
system available today.

6.3 Best-version identification

An experimenter might have the goal of confidently identify-
ing the best version (while rolling it out) without worrying
about maximizing a reward. Solving the problem of best-
version identification enables shorter experimentation and,
consequently, the release of the best version to production as
quickly as possible. Using the same benchmark application
and comparison baselines used in §6.2, we evaluate, compar-
atively, Iter8’s ability to identify the best version as quickly
as possible. The goal of Iter8’s PBR-split algorithm is to
solve the best-version identification problem.
Methodology. The experiment settings are the same we
used in §6.2. We study how long (in number of requests)
it takes each of the algorithms to identify the best version
with varying levels of statistical confidence. Once the desired
confidence level is reached, the experiment finishes.
Quantitative results. Figure 6 shows the number of re-
quests needed by each algorithm to reach 3 confidence

Figure 6: Best-version identification. The number of

requests to reach various confidence levels are shown

for PBR, PBR-split, Exp3, and UNIF.

levels—90%, 95%, and 99%. Our PBR-split algorithm iden-
tifies the best version significantly faster than the others.
It reduces the total number of requests by 56% compared
to Exp3 and 59% compared to UNIF to reach a 99% confi-
dence level. Moreover, it does so while observing SLOs (see
Figure 5), which no other multi-armed bandit algorithm or
online experimentation system supports today.
As we explained in §5, PBR-split’s strategy prioritizes

differentiating the best version from the second best and, by
extension, the rest. Differently PBR, exploits the current best
version in most of the steps at the expense of refining its
knowledge of other competing versions.

6.4 Algorithmic analysis

We ran all previous experiments in a public multi-tenant
cloud on Kubernetes and Istio. In this section, we evaluate our
algorithms using a Python simulation environment. These
simulations enable us to investigate our algorithms’ behavior
with randomized KPI values and an increasing number of
competing versions.
Methodology. We simulate KPIs for competing versions
according to randomly generated distributions. The simula-
tion process enables us to randomize KPIs, vary the number
of competing versions, and evaluate the robustness of our
algorithms more comprehensively.
We run 20 experiments for each given number of vari-

ants ([20, 30, 40, 50]) with 100 requests per step, and at each
run, we randomize the KPI values. At the beginning of each
experiment, the mean reward (E[X0[p]]) is sampled from
the uniform distribution (U[0,1]), then the reward follows
a Bernoulli distribution, i.e., Pr[X0 = 1] = E[X0[p]]. The
mean latency (E[X1[p]]) is sampled from the uniform dis-
tribution (U[100,500]), and the latency of each simulated
version follows a normal distribution (i.e., X1 ∼ N(µ =
E[X1[p]], σ

2 = 20)). We specify an SLO on the mean latency
as ≤ ℓlat = 300ms .

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

(a) Best-version identification (b) Reward maximization

Figure 7: Comphrensive analysis of algorithms. Anal-

ysis of algorithms for a various numbers of competing

versions with randomized KPIs.

Quantitative results. Figure 7 summarizes the overall re-
sults for rewardmaximization and best-version identification.
Figure 7a shows the number of requests needed by each al-
gorithm to reach a 95% level of confidence for a varying
number of competing versions. PBR-split outperforms all
other algorithms. In particular, when the number of com-
peting versions increases, it becomes more challenging for
the other algorithms to identify the best version. This is re-
flected by the substantial increase in the number of requests
to reach the given level of confidence. In contrast, PBR-split
quickly eliminates the underperforming versions with statis-
tical confidence, resulting in quicker assessments. Thus, it
scales better to a large number of versions.
Figure 7b shows the traffic split to the optimal version

in the reward-maximization experiments. We observe that,
even with a large number of versions and randomized KPIs,
PBR significantly outperforms the alternatives, converging
to the optimal version quickly, thereby maximizing the traffic
to it and the reward.

6.5 Overhead

Iter8-analytics uses sophisticated statistical methods when
deciding how to split user traffic across competing versions.
This section evaluates if the overhead of running these sta-
tistical methods in real-time can impact their practicality.
We perform these measurements on a machine with 4 CPUs
(2.8 GHz) and 16 GB of memory by varying the number of
versions in an experiment. Taking the average of 100 runs,
we observe that the mean response time of the analytics
service is 32ms, 40ms, 192ms, and 219ms for 3, 5, 20, and 50
competing versions, respectively. Given that experiments
and their step duration are usually in the order of minutes
and hours, sub-second delays are negligible. Further, Iter8-
analytics and controller resource usage (which is minimal)
is shared across experiments and users within a cluster.

7 DISCUSSION

Iter8 vs. resource allocation modules. Iter8 treats ex-
perimentation, auto-scaling, and hardware configuration as
related but distinct problems. Iter8 experiments are declara-
tively specified, and experiment specifications co-exist with
other specifications such as Horizontal Pod Autoscaler ([32])
configurations in Kubernetes or auto-scaling annotations in
Knative ([43]). In our experiments, we provided the same
auto-scaling and hardware configuration for each version,
which ensures fairness. In particular, if the candidate ver-
sion is found to be performant, and starts receiving a higher
share of traffic, it would auto-scale in the same manner as
the baseline version. This is the recommended practice for
experimentation with Iter8.
Experimentation cost. Users can set up a maximum exper-
iment duration which Iter8 will honor. If a winner cannot
be found within this duration, Iter8 will end the experiment
and provide the details of its statistical analysis to help users
understand any trends discovered by it (§4.3). Users can also
configure experiments so that a candidate version is rolled
back immediately if it seriously misbehaves (e.g., due to a ma-
jor performance regression) [37]. Another safeguard Iter8
supports is traffic segmentation, where a new version can
be gradually rolled out only to a selected segment of the
end-users [37].

8 CONCLUSION

In this paper, we propose Iter8, an online experimentation
system for cloud applications. Our system embodies our
novel mathematical formulation built on online Bayesian
learning and our new multi-armed bandit algorithms (PBR
and PBR-split) to enable online experimentation tailored for
the cloud, considering both SLOs and business concerns, un-
like existing solutions. Through extensive experiments in
a public cloud, we compare Iter8 against popular alterna-
tives from the cloud-native computing community, as well
as state-of-the-art algorithms. We demonstrate that Iter8 is
not only more general, but it also outperforms the existing
alternatives.

Acknowledgements. We thank our shepherd, Zhihao Jia, and the anony-
mous reviewers for their invaluable feedback. This research is partially
supported by IBM Thomas J. Watson Research Center.

REFERENCES

[1] Deepak Agarwal. 2013. Computational Advertising: The Linkedin
Way. In Proceedings of the 22nd ACM International Conference on Infor-
mation and Knowledge Management (San Francisco, California, USA)
(CIKM ’13). Association for Computing Machinery, New York, NY,
USA, 1585–1586.

[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang
Zhang. 2014. LASER: A Scalable Response Prediction Platform for

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

Online Advertising. In Proceedings of the 7th ACM International Con-
ference on Web Search and Data Mining (New York, New York, USA)
(WSDM ’14). Association for Computing Machinery, New York, NY,
USA, 173–182.

[3] Shipra Agrawal and Navin Goyal. 2017. Near-Optimal Regret Bounds
for Thompson Sampling. J. ACM 64, 5, Article 30 (Sept. 2017), 24 pages.
https://doi.org/10.1145/3088510

[4] Akamai. 2017. Akamai Online Retail Performance Report: Milliseconds
Are Critical. https://www.akamai.com/uk/en/about/news/press/2017-
press/akamai-releases-spring-2017-state-of-online-retail-
performance-report.jsp.

[5] Xavier Amatriain and Deepak Agarwal. 2016. Tutorial: Lessons
Learned from Building Real-Life Recommender Systems. In Proceedings
of the 10th ACM Conference on Recommender Systems (Boston, Mas-
sachusetts, USA) (RecSys ’16). Association for Computing Machinery,
New York, NY, USA, 433. https://doi.org/10.1145/2959100.2959194

[6] Argo Rollouts. 2021. https://argoproj.github.io/argo-rollouts/.
[7] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.

2003. The Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput.
32, 1 (Jan. 2003), 48–77. https://doi.org/10.1137/S0097539701398375

[8] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software
Architect’s Perspective (1st ed.). Addison-Wesley Professional.

[9] Mark A. Beaumont, Wenyang Zhang, and David J. Balding. 2002. Ap-
proximate Bayesian Computation in Population Genetics. Genetics
162, 4 (2002), 2025–2035.

[10] Andrew Begel and Thomas Zimmermann. 2014. Analyze This! 145
Questions for Data Scientists in Software Engineering. In Proceedings of
the 36th International Conference on Software Engineering (Hyderabad,
India) (ICSE 2014). Association for Computing Machinery, New York,
NY, USA, 12–23. https://doi.org/10.1145/2568225.2568233

[11] Lucas Bernardi, Themistoklis Mavridis, and Pablo Estevez. 2019. 150
Successful Machine Learning Models: 6 Lessons Learned at Book-
ing.Com. In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery; Data Mining (Anchorage, AK, USA)
(KDD ’19). Association for Computing Machinery, New York, NY, USA,
1743–1751. https://doi.org/10.1145/3292500.3330744

[12] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015.
The Making of Cloud Applications: An Empirical Study on Software
Development for the Cloud. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA,
393–403. https://doi.org/10.1145/2786805.2786826

[13] Cloud Native Computing Foundation (CNCF). 2020. CNCF Sur-
vey. https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_
Report_2020.pdf.

[14] Cloud Native Computing Foundation (CNCF). 2021. CNCF. https:
//www.cncf.io.

[15] Controller Pattern, Kubernetes. 2021. https://kubernetes.io/docs/
concepts/architecture/controller/.

[16] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation (Boston,
MA, USA) (NSDI’17). USENIX Association, USA, 613–627.

[17] Custom Resources, Kubernetes. 2021. https://kubernetes.io/docs/
concepts/extend-kubernetes/api-extension/custom-resources/.

[18] Morris H. DeGroot and Mark J. Schervish. 2002. Probability and Statis-
tics (3 ed.). Addison-Wesley.

[19] Yoav Einav. 2019. Amazon found every 100ms of latency cost them
1% in sales. https://www.gigaspaces.com/blog/amazon-found-every-
100ms-of-latency-cost-them-1-in-sales/.

[20] D. Ernst, A. Becker, and S. Tai. 2019. Rapid Canary Assessment
Through Proxying and Two-Stage Load Balancing. In 2019 IEEE In-
ternational Conference on Software Architecture Companion (ICSA-C).
116–122.

[21] Aleksander Fabijan, Pavel Dmitriev, Helena Holmström Olsson, and
Jan Bosch. 2017. The Evolution of Continuous Experimentation in
Software Product Development: From Data to a Data-Driven Organi-
zation at Scale. In Proceedings of the 39th International Conference on
Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press,
770–780. https://doi.org/10.1109/ICSE.2017.76

[22] Firebase. 2021. https://firebase.google.com.
[23] Flagger. 2021. https://docs.flagger.app.
[24] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna

Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 19–33. https://doi.org/
10.1145/3297858.3304004

[25] Aditya Gopalan, Shie Mannor, and Yishay Mansour. 2014. Thompson
Sampling for Complex Online Problems. In Proceedings of the 31st
International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR,
Bejing, China, 100–108.

[26] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and
Ralf Herbrich. 2010. Web-Scale Bayesian Click-through Rate Prediction
for Sponsored Search Advertising in Microsoft’s Bing Search Engine.
In Proceedings of the 27th International Conference on International
Conference on Machine Learning (Haifa, Israel) (ICML’10). Omnipress,
Madison, WI, USA, 13–20.

[27] M. Grambow, F. Lehmann, and D. Bermbach. 2019. Continuous Bench-
marking: Using System Benchmarking in Build Pipelines. In 2019 IEEE
International Conference on Cloud Engineering (IC2E). 241–246.

[28] Martin Grambow, Lukas Meusel, Erik Wittern, and David Bermbach.
2020. Benchmarking microservice performance: a pattern-based ap-
proach. Proceedings of the 35th Annual ACM Symposium on Applied
Computing (2020).

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep
Residual Learning for Image Recognition. arXiv:1512.03385 [cs.CV]

[30] Hey-workload. 2016. https://github.com/rakyll/hey.
[31] Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and S.V.N. Vish-

wanathan. 2017. An Efficient Bandit Algorithm for Realtime Multivari-
ate Optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Halifax, NS,
Canada) (KDD ’17). Association for Computing Machinery, New York,
NY, USA, 1813–1821.

[32] Horizontal Pod Autoscaler. 2021. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/.

[33] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation (1st
ed.). Addison-Wesley Professional.

[34] InfluxDB. 2013. https://www.influxdata.com/products/influxdb-
overview/.

[35] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the
Performance Variability of Production Cloud Services. In Proceedings of
the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID ’11). IEEE Computer Society, Washington,
DC, USA, 104–113.

[36] Istio. 2021. https://istio.io/docs/concepts/what-is-istio/.
[37] Iter8. 2020. https://iter8.tools/.

https://doi.org/10.1145/3088510
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://doi.org/10.1145/2959100.2959194
https://argoproj.github.io/argo-rollouts/
https://doi.org/10.1137/S0097539701398375
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/3292500.3330744
https://doi.org/10.1145/2786805.2786826
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io
https://www.cncf.io
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://doi.org/10.1109/ICSE.2017.76
https://firebase.google.com
https://docs.flagger.app
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://arxiv.org/abs/1512.03385
https://github.com/rakyll/hey
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://istio.io/docs/concepts/what-is-istio/
https://iter8.tools/

Iter8: Online Experimentation in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

[38] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, and et al. 2017. Canopy: An End-to-End Performance
Tracing And Analysis System. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 34–50. https://doi.
org/10.1145/3132747.3132749

[39] Julian Katz-Samuels and Clay Scott. 2018. Feasible Arm Identification
(Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and
Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm Sweden,
2535–2543. http://proceedings.mlr.press/v80/katz-samuels18a.html

[40] KFServing. 2021. https://github.com/kubeflow/kfserving/.
[41] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew

Begel. 2016. The Emerging Role of Data Scientists on Software
Development Teams. In Proceedings of the 38th International Con-
ference on Software Engineering (Austin, Texas) (ICSE ’16). Associa-
tion for Computing Machinery, New York, NY, USA, 96–107. https:
//doi.org/10.1145/2884781.2884783

[42] Knative. 2021. https://knative.dev/.
[43] KNative Autoscalers. 2021. https://knative.dev/docs/serving/

autoscaling/autoscaler-types/.
[44] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils

Pohlmann. 2013. Online Controlled Experiments at Large Scale. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (Chicago, Illinois, USA) (KDD ’13).
Association for Computing Machinery, New York, NY, USA, 1168–1176.
https://doi.org/10.1145/2487575.2488217

[45] Ron Kohavi, Randal M. Henne, and Dan Sommerfield. 2007. Practical
Guide to Controlled Experiments on theWeb: Listen to Your Customers
Not to the Hippo. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Jose, Cali-
fornia, USA) (KDD ’07). Association for Computing Machinery, New
York, NY, USA, 959–967. https://doi.org/10.1145/1281192.1281295

[46] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Technical Report.

[47] Kubernetes. 2021. https://kubernetes.io/.
[48] Jaewon Lee, Changkyu Kim, Kun Lin, Liqun Cheng, Rama Govindaraju,

and Jangwoo Kim. 2018. WSMeter: A Performance Evaluation Method-
ology for Google’s Production Warehouse-Scale Computers. SIGPLAN
Not. 53, 2 (March 2018), 549–563. https://doi.org/10.1145/3296957.
3173196

[49] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010. A
Contextual-Bandit Approach to Personalized News Article Recommen-
dation. In Proceedings of the 19th International Conference on World
Wide Web (Raleigh, North Carolina, USA) (WWW ’10). Association for
Computing Machinery, New York, NY, USA, 661–670.

[50] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada,
Nuno Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017.
CrystalNet: Faithfully Emulating Large Production Networks. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles (SOSP
’17).

[51] Benedict C. May, Nathan Korda, Anthony Lee, and David S. Leslie.
2012. Optimistic Bayesian Sampling in Contextual-bandit Problems. J.
Mach. Learn. Res. 13 (June 2012), 2069–2106.

[52] Marissa Mayer. 2006. What Google Knows. Presentation deliv-
ered at the Web 2.0 Summit. Summary by Greg Linden is here:
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html.

[53] New Relic. 2021. https://newrelic.com.
[54] Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril

Gorovoy, Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar.
2017. TensorFlow-Serving: Flexible, High-Performance ML Serving.
In Workshop on ML Systems at NIPS 2017.

[55] Optimizely. 2021. https://www.optimizely.com.
[56] Prometheus. 2021. https://prometheus.io/docs/introduction/

overview/.
[57] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbar-

czyk, and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-
grained Resource Management Framework for SLO-Oriented Mi-
croservices. In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20). USENIX Association, 805–825.
https://www.usenix.org/conference/osdi20/presentation/qiu

[58] A. A. U. Rahman, E. Helms, L. Williams, and C. Parnin. 2015. Synthesiz-
ing Continuous Deployment Practices Used in Software Development.
In 2015 Agile Conference. 1–10.

[59] Daniel Russo. 2016. Simple Bayesian Algorithms for Best Arm Identi-
fication. In 29th Annual Conference on Learning Theory (Proceedings of
Machine Learning Research, Vol. 49), Vitaly Feldman, Alexander Rakhlin,
and Ohad Shamir (Eds.). PMLR, Columbia University, New York, New
York, USA, 1417–1418. http://proceedings.mlr.press/v49/russo16.html

[60] Daniel Russo and Benjamin Van Roy. 2016. An Information-theoretic
Analysis of Thompson Sampling. J. Mach. Learn. Res. 17, 1 (Jan. 2016),
2442–2471.

[61] Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband,
and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found.
Trends Mach. Learn. 11, 1 (July 2018), 1–96. https://doi.org/10.1561/
2200000070

[62] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2019. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. arXiv:1801.04381 [cs.CV]

[63] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent
Beck, and Michael Stumm. 2016. Continuous Deployment at Facebook
and OANDA. In Proceedings of the 38th International Conference on
Software Engineering Companion (Austin, Texas) (ICSE ’16 Companion).
ACM, New York, NY, USA, 21–30.

[64] Gerald Schermann, Dominik Schöni, Philipp Leitner, andHarald C. Gall.
2016. Bifrost: Supporting Continuous Deployment with Automated
Enactment of Multi-Phase Live Testing Strategies. In Proceedings of the
17th International Middleware Conference (Trento, Italy) (Middleware
’16). ACM, New York, NY, USA, Article 12, 14 pages.

[65] Mark J. Schervish. 1995. Theory of Statistics. Springer-Verlag.
[66] Mojtaba Shahin, Mansooreh Zahedi, MuhammadAli Babar, and Liming

Zhu. 2018. An empirical study of architecting for continuous delivery
and deployment. Empirical Software Engineering (09 2018). https:
//doi.org/10.1007/s10664-018-9651-4

[67] Karen Simonyan and Andrew Zisserman. 2015. Very Deep
Convolutional Networks for Large-Scale Image Recognition.
arXiv:1409.1556 [cs.CV]

[68] Spinnaker. 2021. https://www.spinnaker.io/.
[69] Split. 2021. https://www.split.io.
[70] Sysdig. 2021. https://sysdig.com.
[71] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,

and Zbigniew Wojna. 2015. Rethinking the Inception Architecture for
Computer Vision. arXiv:1512.00567 [cs.CV]

[72] Mingxing Tan and Quoc V. Le. 2020. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. arXiv:1905.11946 [cs.LG]

[73] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay
Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert
Karl. 2015. Holistic Configuration Management at Facebook. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles (Mon-
terey, California) (SOSP ’15). Association for Computing Machinery,
New York, NY, USA, 328–343. https://doi.org/10.1145/2815400.2815401

[74] Alexander Tarvo, Peter F. Sweeney, Nick Mitchell, V.T. Rajan, Matthew
Arnold, and Ioana Baldini. 2015. CanaryAdvisor: A Statistical-Based
Tool for Canary Testing (Demo). In Proceedings of the 2015 International

https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3132747.3132749
http://proceedings.mlr.press/v80/katz-samuels18a.html
https://github.com/kubeflow/kfserving/
https://doi.org/10.1145/2884781.2884783
https://doi.org/10.1145/2884781.2884783
https://knative.dev/
https://knative.dev/docs/serving/autoscaling/autoscaler-types/
https://knative.dev/docs/serving/autoscaling/autoscaler-types/
https://doi.org/10.1145/2487575.2488217
https://doi.org/10.1145/1281192.1281295
https://kubernetes.io/
https://doi.org/10.1145/3296957.3173196
https://doi.org/10.1145/3296957.3173196
h
https://newrelic.com
https://www.optimizely.com
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.usenix.org/conference/osdi20/presentation/qiu
http://proceedings.mlr.press/v49/russo16.html
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
https://arxiv.org/abs/1801.04381
https://doi.org/10.1007/s10664-018-9651-4
https://doi.org/10.1007/s10664-018-9651-4
https://arxiv.org/abs/1409.1556
https://www.spinnaker.io/
https://www.split.io
https://sysdig.com
https://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1905.11946
https://doi.org/10.1145/2815400.2815401

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Mert Toslali, Srinivasan Parthasarathy, Fabio Oliveira, Hai Huang, and Ayse K. Coskun

Symposium on Software Testing and Analysis (Baltimore, MD, USA)
(ISSTA 2015). Association for Computing Machinery, New York, NY,
USA, 418–422. https://doi.org/10.1145/2771783.2784770

[75] William R. Thompson. 1933. On the likelihood that one
unknown probability exceeds another in view of the evi-
dence of two samples. Biometrika 25, 3-4 (12 1933), 285–
294. arXiv:http://oup.prod.sis.lan/biomet/article-pdf/25/3-
4/285/513725/25-3-4-285.pdf

[76] Traffic Management, Istio. 2021. https://istio.io/latest/docs/concepts/
traffic-management/.

[77] Traffic Splitting, Knative Serving. 2021. https://knative.dev/docs/
serving/samples/traffic-splitting/.

[78] Brandon M. Turner and Trisha [Van Zandt]. 2012. A tutorial on ap-
proximate Bayesian computation. Journal of Mathematical Psychology
56, 2 (2012), 69 – 85.

[79] Vamp. 2021. https://vamp.io/.
[80] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding. 2018. Fault

Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study. IEEE Transactions on Software
Engineering (2018), 1–1. https://doi.org/10.1109/TSE.2018.2887384

https://doi.org/10.1145/2771783.2784770
https://arxiv.org/abs/http://oup.prod.sis.lan/biomet/article-pdf/25/3-4/285/513725/25-3-4-285.pdf
https://arxiv.org/abs/http://oup.prod.sis.lan/biomet/article-pdf/25/3-4/285/513725/25-3-4-285.pdf
https://istio.io/latest/docs/concepts/traffic-management/
https://istio.io/latest/docs/concepts/traffic-management/
https://knative.dev/docs/serving/samples/traffic-splitting/
https://knative.dev/docs/serving/samples/traffic-splitting/
https://vamp.io/
https://doi.org/10.1109/TSE.2018.2887384

	Abstract
	1 Introduction
	2 Background and related work
	3 Iter8
	3.1 Experiment spec
	3.2 Design and implementation

	4 Online learning in Iter8
	4.1 Multivariate utility function
	4.2 Belief update
	4.3 Monte Carlo sampling

	5 Iter8's decision algorithms
	6 Experimental evaluation
	6.1 Accuracy
	6.2 Reward maximization
	6.3 Best-version identification
	6.4 Algorithmic analysis
	6.5 Overhead

	7 Discussion
	8 Conclusion
	References

