
ARIMA-Based IT Power Forecasting
Sophia Holland1,2, Daniel Wilson2, Professor Ayse Coskun2

Lausanne Collegiate School, Memphis, TN 1, Boston University Electrical and
Computer Engineering Department, Boston, MA2

Results

References

Acknowledgements

Discussion/
Conclusions

Methods

Introduction

Sine Wave Prediction

RMSE: 0.00652 Order: (1, 0, 1)

Train/Test Split: 324/80 (80%/20%) No Rolling Window

Outdoor Air Temperature Prediction

RMSE: 47.3 Order: (1, 1, 2)

Train/Test Split: 2035/871 (70%/30%) Rolling Window Size: 1

IT Power Prediction

RMSE: 16677.88 Order: (1, 1, 1)

Train/Test Split: 2035/871 (70%/30%) Rolling Window Size: 1

 In a Smart Grid system, electricity
providers determine power demand from
energy users and match their supply
accordingly. This saves power and reduces
costs for all parties involved.

 Users can participate in the Smart Grid
by giving electricity providers a bid for how
much power they will use for a given amount
of time in the future, allowing providers to
adjust how much power gets generated,
stored, and distributed. Having a model that
can accurately predict a user’s power
demand is a key part of this process.

 Using data from the Massachusetts
Green High Performance Computing Center
(MGHPCC), an academic data center, I have
constructed an ARIMA time series
forecasting model to generate out-of-sample
IT (computing/non-cooling) power
predictions.

Preprocessing
Resampling:

Every 8 hours (4 data points per day)

Interpolation:
Missing Values are an average of their two

closest neighboring values.

Above: Data Before Resampling

Above: Data After Resampling

Improving Overall Model Strength
Used three datasets to develop a robust model:
Sine Wave
- Seasonality + linear trend
- Regular, predictable patterns
Outdoor Air Temperature Data
- Noisy data + seasonality
- Patterns can be estimated visually
IT Power Data
- No clear seasonality
- Noisy data + linear trend

Rolling Window Approach
By predicting only one future value at a time,
the forecasts became more accurate than when
many forecasts were made at once. This sort of
continuously rolling approach should make the
model more robust when handling new data
over a long period of time; It was a key factor in
the model’s success.

Error Calculations
Root Mean Square Error (RMSE) was the
method used to determine the model’s
deviations from the real values in the dataset. It
can be expressed as the equation

(Holmes)

RMSE is the standard deviation of the difference
between the predictions and real values. A
perfect model would have an RMSE of zero.
I found that less seasonal data showed a greater
RMSE than data with regular seasonality.

Overall Prediction Trends
Predicted values tended to stay closer to the
moving average in noisy datasets, rarely
matching the highest and lowest values. This
could potentially by improved by increasing the
p value, which would greatly increase the
amount of time the model needs to run.

ARIMA Model
(AutoRegressive Integrated Moving Average)

Original IT Power Series vs IT Power Differenced Once

Proper differencing gives the data a constant overall mean, used
as a baseline from which variations can be predicted.

Many thanks to Daniel Wilson, Professor Ayse
Coskun, and the PEACLab team at Boston
University for their instruction and support
throughout this project.

3 variables make up the Order: (p, d, q)
p = lag order (number of lags; determined by correlation between lags
and present values) → determined from autocorrelation (acf) plots
d = order of differencing
q = moving average order (size of averaging window) → determined from
partial autocorrelation (pacf) plots

- Model commonly used to produce
time series forecasts

- Found in the Statsmodels library for
Python

- Train/Test split must not be
randomized since time sequence
matters in pattern detection

(Brownlee)

Brownlee, Jason. How to Create an ARIMA Model for Time Series
Forecasting in Python
https://machinelearningmastery.com/arima-for-time-series-foreca
sting-with-python/ (Accessed Aug 2021).

Holmes, S. RMS Error
https://statweb.stanford.edu/~susan/courses/s60/split/node60.ht
ml (Accessed Aug 2021).

