
Counterfactual Explanations for
Multivariate Time Series

Emre Ates∗, Burak Aksar∗, Vitus J. Leung†, and Ayse K. Coskun∗
∗Dept. of Electrical and Computer Eng.

Boston University
Boston, MA, USA

Email: {ates,baksar,acoskun}@bu.edu
†Sandia National Laboratories

Albuquerque, NM, USA
Email: vjleung@sandia.gov

Abstract—Multivariate time series are used in many science
and engineering domains, including health-care, astronomy, and
high-performance computing. A recent trend is to use machine
learning (ML) to process this complex data and these ML-based
frameworks are starting to play a critical role for a variety of
applications. However, barriers such as user distrust or difficulty
of debugging need to be overcome to enable widespread adoption
of such frameworks in production systems. To address this
challenge, we propose a novel explainability technique, CoMTE,
that provides counterfactual explanations for supervised machine
learning frameworks on multivariate time series data. Using
various machine learning frameworks and data sets, we compare
CoMTE with several state-of-the-art explainability methods and
show that we outperform existing methods in comprehensibility
and robustness. We also show how CoMTE can be used to debug
machine learning frameworks and gain a better understanding
of the underlying multivariate time series data.

I. INTRODUCTION

Multivariate time series data analytics have been gaining
popularity, especially due to the recent advancements in
internet of things technologies and the omnipresence of
real-time sensors [1]. Health care, astronomy, sustainable
energy, and geoscience are some domains where researchers
utilize multivariate time series along with machine learning
(ML) based analytics to solve problems such as seismic
activity forecasting, hospitalization rate prediction, and many
others [2]. Large-scale computing system management has
also been increasingly leveraging time series analytics for
improving performance, efficiency, or security. For example,
high performance computing (HPC) systems produce terabytes
of instrumentation data per day in the form of logs, metrics,
and traces [3], and monitoring frameworks organize system-
wide resource utilization metrics as multivariate time series.
Thousands of variables can be collected per compute node
and each variable—representing different resource statistics
such as network packet counts, CPU utilization, or memory
statistics—is sampled on intervals of seconds to minutes [3]–
[5]. Analyzing this data is invaluable for management and
debugging [3], [6], but extensive manual analysis of these big
data sets is not feasible. Researchers have recently started using
ML to help analyze large-scale computing system telemetry
data and gain valuable insights about system operation and user

applications. Frameworks using ML methods can process large
amounts of data and, in addition, benefit from the flexibility of
the models that generalize to different systems and potentially
previously unseen cases. ML frameworks using multivariate
time series data have been shown to diagnose performance
variations [7]–[10], improve scheduling [11] or improve system
security by detecting unwanted or illegal applications on HPC
systems [12].

While many advantages of ML are well-studied, there are
also common drawbacks that need to be addressed before ML
can be widely used in production systems. ML frameworks
commonly have a taciturn nature, e.g., reporting only the final
diagnosis when analyzing performance problems in HPC sys-
tems such as “network contention on router-123,”
without providing reasoning relating to the underlying data.
Furthermore, the ML models within these frameworks are black
boxes, which may perform multiple data transformations before
arriving at a classification, and thus are often challenging to
understand. The black-box nature of ML frameworks increases
the difficulty of debugging mispredictions, degrades user trust,
thus reduces the overall usefulness of the frameworks.

To address the broad ML explainability problem, a number
of methods that explain black-box classifiers have been
introduced. These methods can be divided into local and global
explanations, based on whether they explain a single prediction
or the complete classifier. Local explanations can also be
divided into sample-based explanations that provide different
samples i.e., time-windows, as explanations and feature-based
explanations that indicate the features that impact the decision
the most. However, most of the existing explainability methods
are not designed for multivariate time series data, Thus, existing
methods often fail to generate sufficiently simple explanations
when working with complex multivariate time series data, e.g.,
HPC systems data.

Why do existing explainability methods fail to provide
satisfactory explanations for high-dimensional multivariate time
series data? One differentiating factor is the complexity of the
data. Existing sample-based methods provide samples from the
training set or synthetically generate samples [13], [14]. These
methods are designed with the assumption that a single sample

is self-explanatory and users can easily distinguish between
two samples; however, providing a time series sample with
hundreds of variables is most often not an adequate explanation.
On the other hand, existing feature-based methods [15], [16]
provide a set of features and expect the users to know the
meaning of each feature, as well as normal and abnormal
values for them, which is not possible in many domains.

In this paper, we introduce CoMTE, a novel counterfactual
multivariate time series explainability method that provides
explanations for individual predictions. The counterfactual
explanations consist of hypothetical samples that are as similar
as possible to the sample that is explained, while having
a different classification label; i.e., “if the values of these
particular time series were different in the given sample, the
classification label would have been different.” Counterfactual
explanations are generated by selecting time series from
the training set and substituting them in the sample under
investigation to obtain different classification results. In this
way, end users can understand the classification decision by
examining a limited number of variables.

These explanations can then be used to debug misclassifica-
tions, understand how the classifier makes decisions, provide
adaptive dashboards that highlight important metrics from
ongoing application runs, and extract knowledge on the nature
of normal or anomalous behavior of a system. Our specific
contributions are as follows:

• Design of a formal problem statement for multivariate
time series explainability.

• Design and implementation of heuristic algorithms that
generate counterfactual explanations for time series1.

• Experimental evaluation of the proposed explainability
method to explain several ML frameworks that work
with multivariate time series data, using 3 different
HPC telemetry data sets and a motion classification data
set, and comparisons of CoMTE with state-of-the-art
explainability methods using both novel and standard
measures of explanation success. CoMTE generates the
most comprehensible explanations and performs better
than the baselines in terms of faithfulness and robustness.

II. RELATED WORK

Counterfactual explanations have recently been introduced
to explain ML models. Wachter et al. are among the first
to use the term “counterfactual” for ML explanations [17].
Counterfactual explanations have also been used in image [18],
tabular data [19], document [20] and univariate time series [21],
[22] classification. Diverse Counterfactual Explanations (DiCE)
is an open-source counterfactual explanation method for black-
box classifiers [23]. Contrastive explanations method [14]
generates synthetic counterfactuals, while using autoencoders
to ensure the generated sample is realistic. Recent work also
addresses the problem of counterfactuals for data that contains
actionable or immutable features [24], [25].

1Our implementation is available at https://github.com/peaclab/CoMTE

Local feature-based explanations highlight certain features
that impact the classification of a sample of interest. These
methods include the local interpretable model-agnostic expla-
nation (LIME) method, which fits a linear model to classifier
decisions for samples in the neighborhood of the sample to
be explained [15], and Shapley additive explanations (SHAP)
method, which derives additive Shapley values for each feature
to represent the impact of that feature [16]. These feature-based
models do not support using time series directly; however, they
can be applied to sets of features extracted from the time series.

To the best of our knowledge, CoMTE is the first method
to generate counterfactual explanations for ML frameworks
that work with high-dimensional multivariate time series.
Furthermore, it is common for multivariate time series data
to have various physical constraints, such as in HPC time
series data. Existing explainability methods [15], [17], [22]
often require synthetic or random data generation that does
not consider these constraints.

III. THE COUNTERFACTUAL TIME SERIES
EXPLANATION PROBLEM

Our goal is to provide counterfactual explanations for ML
methods that operate on time series data. Given a black-box
ML framework that takes multivariate time series as input
and returns class probabilities, the explanations show which
time series need to be modified, and how, to change the
classification result of a sample in the desired way. For example,
“if MemFree (a variable in an HPC performance analytics
framework) was not decreasing over time, this time window
would not be classified as a memory leak (an anomaly affecting
the performance of an HPC system).” Given a sample and a
class of interest, the counterfactual can be used to learn why
the sample is not classified as the class of interest, because it
is almost identical to the given sample but is classified as the
class of interest.

We define the counterfactual time series explanation problem
as follows. Given a sample to be explained and a class of
interest, find (1) the distractor, which is a sample from the
training set that is classified as the class of interest, and (2)
which small set of time series to substitute from the distractor
to the given sample such that the classification label changes
to the class of interest. In the previous example of explaining
a memory leak, the distractor would be a run from the training
set without a memory leak where MemFree is not decreasing,
and the set of variables would include MemFree. We assume
a black box model for the ML classifier, thus having no access
to the internal weights or gradients.

We use a single distractor instead of combining various
distractors in one explanation, in order to (1) reduce the search
space of possible substitutions, (2) guarantee a possible solution
as long as the distractor is classified as the class of interest,
and (3) improve the usability of CoMTE in cases where it is
necessary to investigate other related data, e.g., logs in addition
to time series data.

A. Problem Statement

In this paper, we represent multivariate time series classi-
fication models using f(x) = y : Rm×t → [0, 1]

k where the
model takes a time series over m variables of length t and
returns the probability for k classes. We use the shorthand
fc(x) as the probability for class c ∈ [1, k]. Our goal is to
find the optimum counterfactual explanation for a given test
sample xtest and a class of interest c. We define an optimum
counterfactual explanation as a modified sample x′ that is
constructed using xtest such that (1) fc(x′) is maximized and
(2) the difference between x′ and xtest is minimized. The
class of modifications that we consider to construct x′ are
substitutions of entire variables from a distractor sample xdist,
chosen from the training set, to xtest. We define the difference
between x′ and xtest as the number of variables that were
substituted to xtest in order to obtain x′.

The optimum counterfactual explanation can be constructed
by finding xdist among the training set and A, which minimizes

L (f, c, A, x′) = (1− fc(x′))
2
+ λ||A||1, (1)

where
x′ = (Im −A)xtest +Axdist, (2)

λ is a tuning parameter, Im is the m×m identity matrix, and
A is a binary diagonal matrix where Aj,j = 1 if variable j of
xtest is going to be swapped with that of xdist, 0 otherwise.
The problem of finding a counterfactual explanation, xdist and
A, that maximize fc(x′) is analogous to the hitting set problem
and thus NP-hard [26], so we focus on designing approximation
algorithms and heuristics that generate acceptable explanations
efficiently.

B. The Rationale for the Chosen Explanation

Explainability techniques targeting multivariate time series
frameworks need to consider several properties that general-
purpose explainability techniques do not. In most domains
that work on time series analytics, time series data is more
complex than traditional machine learning data sets by several
aspects. A single sample is most often not explainable because
of the volume of data it contains; therefore, sample-based
methods often fail to provide comprehensible explanations.
Furthermore, meanings and values of variables may not be
straightforward to understand without additional information
and comparison points. In order to address these challenges, our
explainability approach is simultaneously sample- and feature-
based. We provide a counterfactual sample from the training
set and indicate which of the many time series in the sample
need to be modified to have a different classification result.
This results in an explanation that is easy to understand since
it requires interpreting only a minimal number of variables.
CoMTE makes interpreting easier by including examples of
the same variable for both the distractor and the given test
sample xtest in the explanation.

CoMTE chooses xdist from the training set as part of
the explanation instead of providing synthetic samples as
in previous work [16], [17], as synthetically generated data

might not result in meaningful explanations. For example, in
HPC performance analytics, many variables represent resource
utilization values that have constraints; e.g., the rate of change
and the maximum/minimum values of certain counters are
bounded by physical constraints of the CPUs, servers, and other
components. Choosing a distractor xdist from the training set
guarantees that the time series in the explanation are feasible
and realistic, and also enables the users to inspect the logs
and other information besides time series that belong to the
distractor sample.

IV. COMTE: COUNTERFACTUAL EXPLANATIONS

We present a greedy search algorithm that generates coun-
terfactual explanations for a black-box classifier and a faster
optimization of this algorithm. Our goal is to find counterfactual
explanations for a given test sample xtest and class of interest
c. Recall that a counterfactual explanation is a minimal
modification to xtest such that the probability of being part of
c is maximized. CoMTE aims to find a minimal number of
time series substitutions from the chosen distractor instance
xdist that will flip the prediction.

We relax the loss function L in Eqn. (1), using

L (f, c, A, x′) =
(
(τ − fc(x′))+

)2
+ λ(||A||1 − δ)+, (3)

where x′ is defined in Eqn. (2), τ is the target probability
for the classifier, i.e., the threshold after which increasing
fc(x) does not subjectively improve the explanations, δ is the
threshold below which reducing the number of variables does
not improve the explanations, and x+ = max(0, x), which
is the rectified linear unit (ReLU). ReLU is used to avoid
penalizing explanations shorter than δ. We empirically set
τ = 0.95 and we set δ = 3, as it is shown to be a suitable
number of variables in an explanation [27].

Our explainability method operates by choosing multiple
distractor candidates and, finding the best A matrix for each
distractor. Among the different A matrices, we choose the
matrix with the smallest loss value. We next present how
CoMTE chooses distractors, and two different algorithms for
choosing matrix A for a given distractor.

A. Choosing Distractors

As we seek to find the minimum number of substitutions, it
is intuitive to start with distractors that are as similar to the
test sample as possible. Hence, we choose distractor candidates
by picking the n nearest neighbors of xtest in the training set
that are correctly classified as the class of interest.

To quickly query for nearest neighbors, we keep all correctly
classified training set instances in per-class KD-Trees. The
number of distractors to try out is a tuning parameter of our
algorithm, chosen based on the acceptable running time. If the
number of training instances is large, methods like random
sampling or k-means can be used to reduce the number of
instances before constructing the KD-tree. We use the KD-tree
implementation in scikit-learn [28], and use Euclidean distance
to select n-nearest neighbors, but other distance measures, such
as dynamic time warping, can also be used.

Algorithm 1 Random Restart Hill Climbing
Require: Instance to be explained xtest, class of interest c,

model f , distractor xdist, loss function L(f, c, A, x′), max
attempts, max iters, num restarts

1: for i ∈ [0,num restarts] do
2: Randomly initialize A; attempts ← 0; iters ← 0
3: x′ ← (Im −A)xtest +Axdist
4: l← L(f, c, A, x′)
5: while attempts ≤ max attempts and iters ≤ max iters

do
6: iters++
7: Atmp ← RandomNeighbor(A)
8: x′ ← (Im −Atmp)xtest +Atmpxdist
9: if L(f, c, Atmp, x

′) ≤ l then
10: attempts ← 0; A← Atmp; l← L(f, c, A, x′)
11: else
12: attempts++
13: end if
14: end while
15: end for

B. Sequential Greedy Algorithm

The greedy algorithm for solving the hitting set problem is
shown to have an approximation factor of log2|U |, where U
is the union of all the sets [29]. Thus, one algorithm we use
is the Sequential Greedy Algorithm. In each iteration, we first
replace each variable in xtest by the corresponding variable
from xdist and choose the variable that leads to the highest
increase in fc(x

′). After we replace a variable in xtest, we
continue the greedy search with the remaining variable set
until the prediction probability exceeds τ in Eqn. (3).

C. Random-Restart Hill Climbing

Although the greedy method is able to find a minimal set of
explanations, searching for the best explanation by substituting
the variables one by one can become slow for data sets with
many variables. For a faster algorithm, we apply a derivative-
free optimization algorithm hill-climbing to minimize the loss
L in Eqn. (3).

Hill-climbing attempts to iteratively improve the current
state by choosing the best successor state. The successor
state is defined as adding or removing one variable to the
set of substituted variables, i.e., A. This method only looks
at the current state and possible states in the near future [30].
Since it is easy for hill-climbing to settle in local minima, we
use random restarting, as shown in the Random Restart Hill-
Climbing in Algorithm 1. This algorithm starts with a random
initialization point for A and evaluates L for random neighbors
of A until it finds a better neighbor. If a better neighbor is found,
the search continues from the new A. We use the randomized
optimization algorithms in mlrose package.

In some cases, hill climbing may contain variables in A
that do not affect the target probability, fc(x′). We check for
this possible scenario by pruning the output, i.e., removing
variables that have no effect. In rare cases, all variables may

be pruned by this step. In this scenario, we use greedy search
to find a viable solution.

D. How to Measure Good Explanations

There is no consensus yet on measures for comparing
explainability methods in academia [31], [32]. In this work,
we aim to provide several tenets of good explanations with our
explainability method.

Faithfulness to the original model: An explanation is
faithful to the classifier if it reflects the actual reasoning process
of the model. It is a first-order requirement of any explainability
method to accurately reflect the classifier’s decision process
and not mislead users [15]. To test the faithfulness of CoMTE,
we explain a simple model with a known reasoning process
and report the precision and recall of our explanations.

Comprehensibility by humans: Understanding an expla-
nation should not require specialized knowledge about ML.
A recent survey states that humans prefer only 1 or 2 causes
instead of an explanation that covers the actual and full list of
causes [27]. This is especially important for multivariate data
sets such as HPC telemetry data, since each variable represents
a different counter/gauge and understanding each counter
typically requires expertise. To evaluate comprehensibility,
we compare the number of variables that are returned in
explanations, i.e., lower is better.

Robustness to changes in the sample: It is important for
explanations to be robust [33], which ensures that users can
trust the ML models and explanations. A good explanation
would not only explain the given sample, but provide similar
explanations for similar samples. A measure that have been
used to evaluate robustness is the local Lipschitz constant
L [34], [35], which is defined as follows for a given xtest
instance:

L(xtest) = max
xj∈Nk(xtest)

‖ξ(xtest)− ξ(xj)‖2
‖xtest − xj‖2

, (4)

where ξ(x) is the explanation for instance x, and Nk(x)
is the k-nearest neighbors of xtest in the training set. We
modify the method of calculating this measure by using
nearest neighbors from the training set instead of randomly
generated samples because it is challenging to generate realistic
random time series. The maximum constant is chosen because
the explanations should be robust against the worst-case.
Intuitively, the Lipschitz constant measures the ratio of change
of explanations to changes in the samples. We use A as ξ(x).

Generalizability of explanations: Each explanation should
be generalizable to similar samples, i.e., the lessons learned
from one explanation should apply to other predictions of the
classifier; otherwise, humans using the explanations would
not be able to gain an intuitive understanding of the model.
Furthermore, for misclassifications, it is more useful for the
explanations to uncover types of misclassifications instead
of a single mishap. We measure generalizability by applying
an explanation’s substitutions to other samples. If the same
time series substitutions from the same distractor can flip the
prediction of other samples, the explanation is generalizable.

V. EXPERIMENTAL SETUP

This section describes the time series data sets and ML
frameworks we use to evaluate CoMTE as well as the baseline
explainability methods we implement for comparisons.

A. Data Sets

We use four high-dimensional multivariate time series data
sets: three HPC system telemetry data sets and a motion
classification data set. All three HPC system telemetry data sets
contain data collected using Lightweight Distributed Metric
Service (LDMS) [3]. LDMS collects data from the /proc
filesystem as well as PAPI [36] and Cray performance counters.
One sample always corresponds to the data collected from a
single compute node of an application run.

HPAS: The goal of collecting this data set is to diagnose
performance variations on HPC applications using system
telemetry data collected via LDMS. We run 8 applications,
Cloverleaf, CoMD, miniAMR, miniGhost, miniMD, Kripke,
SW4lite, and MILC [37]–[40] on Voltrino2, each on 4 nodes,
with and without performance anomalies. We use the cpuoc-
cupy, memorybandwidth, cachecopy, memleak, memeater, and
netoccupy anomalies from the HPC performance anomaly suite
(HPAS) [5]. We collect a total of 617 samples (350 training,
267 test) with 839 time series each. We extract 45-second time
windows with 30-second overlaps from each sample.

Taxonomist: The goal of this data set is to classify the
different applications running on HPC systems using LDMS
data. A previously released data set [41] contains 11 different
applications. We use all of the data, which has 4728 samples
(3776 training, 952 test) with 563 time series each.

Cori: We collect this data set from Cori3 to test our
explainability method with data from large-scale systems and
applications. The goal of this data set is to again use LDMS
telemetry data to classify applications. Cori is a Cray XC40
supercomputer with 12,076 nodes. We run 6 applications,
LAMMPS, QMCPACK, HACC, NEKBone, miniAMR, and
HPCG [42]–[45] on 64 nodes for 15-30 minutes. We collect a
total of 9216 samples (7373 training, 1843 test) with 819 time
series each.

NATOPS: This previously released data set is from the
motion classification domain [46]4. We chose this data set
because of the relatively high number of time series per sample,
compared to other time series data sets commonly used in the
ML domain. The NATOPS data contains a total of 24 time
series representing the X, Y and Z coordinates of the left and
right hand, wrist, thumb, and elbows, as captured by a Kinect
2 sensor. We keep the original training and test set of 180
samples each, with 50 second time windows.

B. Machine Learning Techniques

We evaluate our explainability techniques by explaining 3
different ML pipelines.

2www.sandia.gov/asc/computational systems/HAAPS.html
3docs.nersc.gov/systems/cori/
4We use the version found in UCR time series classification repository at

www.timeseriesclassification.com.

Statistical Feature Extraction + Logistic Regression: The
logistic regression classifier is inherently interpretable, so we
use this pipeline for simpler tests of our explanations in
experiments where we need a ground truth for explanations.
For input feature vector x the logistic regression model we use
calculates the output y = S(w · x), where S(z) = 1

1+e−z

is the sigmoid function. Thus, the classifier only learns
the weight vector w during training5. Any feature xi for
which the corresponding weight wi is zero has no effect
on the classification. Similarly, features can be sorted based
on their impact on the classifier decision using |wi|. We
extract 11 statistical features: the minimum, maximum, mean,
standard deviation, skew, kurtosis, 5th, 25th, 50th, 75th and 95th

percentiles from each of the time series, which are commonly
used in previous work [7], [8], [12].

Statistical Feature Extraction + Random Forest: This
technique represents a commonly used pipeline to classify
time series data for failure prediction, diagnose performance
variability, or classify applications [7], [8], [10], [47]. For
example, Tuncer et al. [7] diagnose performance anomalies
by extracting statistical features from system telemetry data
and using random forests to classify the type or absence of
anomalies. We extract the same 11 statistical features as the
logistic regression method. Then, we train scikit-learn’s random
forest classifier using these features.

Autoencoder: Borghesi et al. have proposed an autoencoder
architecture for anomaly detection using HPC time series
data [9]. We implement this architecture, which learns a
compressed representation of “healthy” data, and samples with
high mean reconstruction error are classified as anomalous.
In order to convert the mean error, which is a positive real
number, to class probabilities between 1 and 0, we subtract the
chosen threshold from the error and use the sigmoid function.

C. Baseline Methods

We compare our explainability method with popular explain-
ability methods, LIME [15], SHAP [16], as well as Random,
which picks a random subset of the variables as the explanation.

LIME operates by fitting an interpretable linear model to
the classifier’s predictions of random data samples, weighted
based on their distance to the test sample. Random data is
generated based on the range observed in the training set. In
our evaluation, we use the open-source LIME implementation6.
Another challenge with LIME is that it requires the number of
features in the explanation as a user input. In our experiments,
we leave the value as the default (10), and we first use CoMTE
to find how many features are sufficient, then trim LIME’s
output to match that number.

SHAP operates by calculating feature importance values
using model parameters; however, since we do not have access
to model parameters, we use the open source KernelSHAP

5Other formulations of logistic regression include a b term such that y =
S(w · x+ b), but we omit this for better interpretability.

6www.github.com/marcoctr/lime

0 5 10 15 20 25
Time (s)

0

1000

2000

3000

4000

5000
pgalloc_normal::vmstat

xtest

Distractor

0 5 10 15 20 25
Time (s)

0

2

4

6

8

10
htlb_buddy_alloc_success::vmstat

Fig. 1. The explanation of CoMTE for a correctly classified time window with
the “memory leak” label. CoMTE provides two variables as an explanation to
change the classification label from “memory leak” to “healthy.” The variables
are shown in the y-axes and the variable names are above the plots.

implementation7, which estimates SHAP values without using
model weights.

Neither SHAP nor LIME can be directly applied to time
series models, so we apply them to interpret the classifier used
in feature-based frameworks.

VI. EVALUATION

In this section, we evaluate CoMTE and compare it with
other explainability methods based on qualitative comparisons
and the metrics described in Sec. IV-D. We aim to answer
several questions: (1) Are the explanations minimal? (2) Are
the explanations faithful to the original classifier? (3) Are the
explanations robust, or do we get different explanations based
on small perturbations of the input? (4) Are the explanations
generalizable to different samples? (5) Are the explanations
useful in understanding the classifier?

Qualitative Evaluation Our first-order evaluation is to use
CoMTE and the baselines to explain a realistic classifier.
Similar to the framework proposed by Tuncer et al. [7], we
use the random forest classifier with feature extraction and the
HPAS dataset, which includes different types of performance
anomalies. We choose the “memory leak” anomaly from the
HPAS data set. Our goal is to understand better the classifier’s
understanding of the “memory leak” anomaly. After training
the random forest pipeline, we choose a correctly classified
time window with the memory leak label as xtest, and the
“healthy” class as the class of interest. We run CoMTE, LIME,
and SHAP with the same xtest and compare the results.

Our explanation contains two time series, and is shown in
Fig. 1. The first variable to be substituted is pgalloc_-
normal from /proc/vmstat, which is a counter that
represents the number of page allocations per second. It
is immediately apparent that the nodes with memory leaks
perform many memory allocations and act periodically.

The second variable in Fig. 1 is htlb_buddy_alloc-
_successes, which shows the number of successful huge
page allocations. Memory leaks do not need to cause huge page
allocations in a system with fragmented memory, where huge
page allocations would fail. This indicates that our training set

7www.github.com/slundberg/shap

HPAS Cori Taxonomist NATOPS
Data Set

0.7

0.8

0.9

1.0

Pr
ec

isi
on

HPAS Cori Taxonomist NATOPS
Data Set

0.0

0.1

0.2

0.3

0.4

0.5

Re
ca

ll

OptimizedSearch Greedy SHAP LIME Random

Fig. 2. Precision and recall of the explanations for a classifier with known
feature importances. CoMTE (OptimizedSearch and Greedy), and SHAP have
perfect precision. LIME has lower precision for Cori and Taxonomist data sets,
which indicates that although some features have no impact on the classifier
decision, they are included in the LIME explanations. The low recall indicates
that not every feature is used in every local decision.

is biased towards systems with less fragmented memory, most
probably because our benchmarks are all short-lived.

The baseline methods, LIME and SHAP, can only explain the
random forest classifier, and they can not provide explanations
that relate to the time series. The SHAP explanation contains
187 features with very similar SHAP values, and it is difficult to
decide how many features are sufficient for a good explanation.
Similarly, LIME requires the number of features in the
explanation as a user input. Finally, it is left to the user to
interpret the values of different features, e.g., the 75th percentile
of pgalloc_normal was 5,127; however, this does not
inform the user of normal values for this counter, or whether
it was too high or too low.

It is important to note that both LIME and SHAP use
randomly generated data for the explanations. In doing so,
these methods assume that all of the features are independent
variables; however, many features are in fact dependent, e.g.,
features generated from the same variable. Without knowledge
of this, these random data generation methods may test the
classifier with infeasible synthetic runs, e.g., runs where the 75th

percentile of the one variable is lower than the 50th percentile
of the same variable. CoMTE does not generate synthetic data
and uses the whole time series instead of just the statistical
features, so it is not affected by this.

Comprehensibility We measure comprehensibility using the
number of variables in the explanation. CoMTE returns 2 time
series for the qualitative evaluation example in Fig. 1, and in
most cases the number of time series in our explanations is
below 3; however, for some challenging cases, it can reach up
to 10. SHAP explanations typically have hundreds of features
for HPC time series data. LIME requires the number of features
as an input; however, it does not provide any guidelines for
deciding this value.

Faithfulness We test whether the explainability methods
actually reflect the decision process of the models, i.e., whether
they are faithful to the model. For every data set, we train a
logistic regression model with L1 regularization. We change the
L1 regularization parameter until less than 10 variables are used
by the classifier. The resulting classifier uses features derived
from 5 variables for HPAS and Cori data, 9 for NATOPS, and
8 for Taxonomist. Because we know the used variables, we

HPAS Cori Taxonomist NATOPS
Data Set

0.0

0.5

1.0

1.5
No

rm
al

ize
d

Lip
sc

hi
tz

 C
on

st
an

t

Method
OptimizedSearch
Greedy
SHAP
LIME
Random

Fig. 3. Robustness of explanations to changes in the test sample. CoMTE
(OptimizedSearch and Greedy) is the most robust to small changes in the
input, resulting in more predictable explanations and a better user experience.
The Lipschitz constant is normalized to be comparable between different data
sets. A Lower value indicates better robustness.

cachecopy cpuoccupy membw
Predicted

cachecopy

cpuoccupy

membw

Ac
tu

al

0.37 0.13

1 0.28

0.48 0.34
0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

Fig. 4. We report coverage for each (true class, predicted class) pair. For the
cpuoccupy runs misclassified as cachecopy, every explanation is applicable to
every other sample with the same misclassification.

can rank the explanations based on precision and recall.
We acquire explanations for each sample in the test set and

show the average precision and recall. To ensure that the other
explainability methods are not at a disadvantage, we first run
the greedy search method and get the number of variables in
the explanation. Then, we get the same number of variables
from each method.

The results in Fig. 2 show that both our method and SHAP
have perfect precision. Recall values of the explanations are
lower than one because not every feature in the classifier is
effective for every decision. Notably, LIME has low precision
for the Cori and Taxonomist data sets, which indicates that
there may be features in LIME explanations that are actually
not used by the classifier at all. This outcome could be due to
the randomness in the data sampling stage of LIME.

Robustness For robustness, we calculate the Lipschitz
constant given in Eqn. (4) for each test sample and show
average results in Fig. 3. According to the results, CoMTE is
the most robust explainability technique. One reason is that
CoMTE does not use random data generation for explanations,
which reduces the randomness in the explanations. For the
NATOPS data set, the greedy method has better robustness
compared to the optimized search, because the greedy method
inspects every variable before generating an explanation, thus
finds the best variable, while the optimized search stops after
finding a suitable explanation.

Generalizability We test whether our explanations for one
xtest are generalizable to other samples. We use the HPAS data
set and random forest classifier with feature extraction, where
3 classes are confused with each other. For each misclassified

test instance, we get an explanation and apply the same variable
substitutions using the same distractor to other test samples
with the same (true class, predicted class) pair.

We report the coverage, which is the percentage of misclas-
sifications that the explanation applies (i.e., successfully flips
the prediction for) to the selected (true, predicted) class pair in
Fig. 4. According to our results, on average, explanations for
one mispredicted sample are applicable to over 40% of similarly
mispredicted samples. This shows that users do not need to
manually inspect the explanation for every misprediction, and
instead, they can obtain a general idea of the classifiers error
characteristics from a few explanations, which is one of the
goals of explainability.

VII. CONCLUSION AND FUTURE WORK

This paper, for the first time, investigated explainability for
ML frameworks that use multivariate time series data sets.
Multivariate time series data is widely used in many scientific
and engineering domains, and ML-based HPC analysis and
management methods that show a lot of promise to improve
HPC system performance, efficiency, and resilience. Explain-
ability is an important requirement for any ML framework that
seeks widespread adoption in real-world production systems.

We defined the counterfactual time series explainability
problem and presented CoMTE, a method to can gener-
ate feasible explanations. We also demonstrated the use of
CoMTE to explain various frameworks, and showed that
our method outperforms existing explainability methods in
terms of comprehensibility and robustness. In the future, we
plan to explore approximation algorithms for the optimization
problem that may lead to better explanations in a shorter time.
Additionally, we plan to develop support for minimizing the
target probability for the class of interest, fc(x′), as opposed
to maximizing, which can provide novel explanations for
multiclass classification tasks.

ACKNOWLEDGMENT

This work has been partially funded by Sandia National
Laboratories. Sandia National Labs is a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under
Contract DE-NA0003525.

REFERENCES

[1] R. Assaf and A. Schumann, “Explainable deep neural networks for
multivariate time series predictions,” in Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI, 7 2019, pp. 6488–6490.

[2] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific Reports, vol. 8, no. 1, p. 6085, Apr 2018. [Online]. Available:
https://doi.org/10.1038/s41598-018-24271-9

[3] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
distributed metric service: A scalable infrastructure for continuous
monitoring of large scale computing systems and applications,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, pp. 154–165.

[4] A. Bartolini, A. Borghesi, A. Libri, F. Beneventi, D. Gregori, S. Tinti,
C. Gianfreda, and P. Altoè, “The D.A.V.I.D.E. big-data-powered fine-grain
power and performance monitoring support,” in International Conference
on Computing Frontiers, 2018, p. 303–308.

[5] E. Ates, Y. Zhang, B. Aksar, J. Brandt, V. J. Leung, M. Egele, and A. K.
Coskun, “HPAS: An HPC performance anomaly suite for reproducing
performance variations,” in Proceedings of the 48th International
Conference on Parallel Processing, ser. ICPP 2019, no. 40, 2019.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: Automated classification of performance
crises,” in Proceedings of the 5th European Conference on Computer
Systems, 2010, pp. 111–124.

[7] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing performance variations in HPC
applications using machine learning,” in International Supercomputing
Conference (ISC-HPC), 2017, pp. 355–373.

[8] ——, “Online diagnosis of performance variation in HPC systems
using machine learning,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 4, pp. 883–896, April 2019.

[9] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini,
“A semisupervised autoencoder-based approach for anomaly detection
in high performance computing systems,” Engineering Applications of
Artificial Intelligence, vol. 85, p. 634–644, Oct 2019.

[10] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data mining-
based analysis of HPC center operations,” in 2017 IEEE International
Conference on Cluster Computing, 2017, pp. 766–773.

[11] C.-T. Yang, K.-C. Lai, and H.-Y. Tung, “On construction of a well-
balanced allocation strategy for heterogeneous multi-cluster computing
environments,” The Journal of Supercomputing, vol. 56, no. 3, pp. 270–
299, Jun 2011.

[12] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele,
and A. K. Coskun, “Taxonomist: Application detection through rich
monitoring data,” in Euro-Par 2018: Parallel Processing. Cham: Springer
International Publishing, 2018, pp. 92–105.

[13] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in Proceedings of the International Conference
on Machine Learning, vol. 70, Aug 2017, pp. 1885–1894.

[14] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shanmugam,
and P. Das, “Explanations based on the missing: Towards contrastive
explanations with pertinent negatives,” in Advances in Neural Information
Processing Systems (NeurIPS) 31, 2018, pp. 592–603.

[15] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’16, 2016, p. 1135–1144.

[16] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in NeurIPS 30, 2017, pp. 4765–4774.

[17] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,”
Harv. JL & Tech., vol. 31, p. 841, 2017.

[18] A. Akula, S. Wang, and S.-C. Zhu, “Cocox: Generating conceptual and
counterfactual explanations via fault-lines,” Proc. of the AAAI Conference
on Artificial Intelligence, vol. 34, no. 03, p. 2594–2601, 2020.

[19] M. Pawelczyk, K. Broelemann, and G. Kasneci, “Learning model-agnostic
counterfactual explanations for tabular data,” in Proceedings of The Web
Conference 2020, 2020, pp. 3126–3132.

[20] D. Martens and F. Provost, “Explaining data-driven document classifica-
tions,” MIS Q., vol. 38, no. 1, p. 73–100, Mar. 2014.

[21] E. Delaney, D. Greene, and M. T. Keane, “Instance-based counterfactual
explanations for time series classification,” arXiv:2009.13211 [cs.LG],
2020.

[22] I. Karlsson, J. Rebane, P. Papapetrou, and A. Gionis, “Explainable time
series tweaking via irreversible and reversible temporal transformations,”
in IEEE International Conference on Data Mining, 2018, pp. 207–216.

[23] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the Conference on Fairness, Accountability, and Transparency, 2020,
p. 607–617.

[24] A.-H. Karimi, G. Barthe, B. Balle, and I. Valera, “Model-agnostic
counterfactual explanations for consequential decisions,” in International
Conference on Artificial Intelligence and Statistics, 2020, pp. 895–905.

[25] R. Poyiadzi, K. Sokol, R. Santos-Rodriguez, T. De Bie, and P. Flach,
“Face: Feasible and actionable counterfactual explanations,” in Proceed-

ings of the AAAI/ACM Conference on AI, Ethics, and Society, ser. AIES
’20, 2020, p. 344–350.

[26] E. Ates, B. Aksar, V. J. Leung, and A. K. Coskun, “Counterfactual
explanations for machine learning on multivariate time series data,”
arXiv:2008.10781 [cs.LG], 2020.

[27] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, p. 1–38, Feb 2019.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, Oct 2011.

[29] K. Chandrasekaran, R. Karp, E. Moreno-Centeno, and S. Vempala,
“Algorithms for implicit hitting set problems,” in Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms, 2011, p. 614–629.

[30] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. USA: Prentice Hall Press, 2009.

[31] Z. C. Lipton, “The mythos of model interpretability,” Queue, vol. 16,
no. 3, p. 31–57, Jun. 2018.

[32] P. Schmidt and F. Biessmann, “Quantifying interpretability and trust in
machine learning systems,” arXiv:1901.08558 [cs.LG], Jan 2019.

[33] H. Lakkaraju, N. Arsov, and O. Bastani, “Robust and stable black box
explanations,” Proceedings of the International Conference on Machine
Learning, 2020.

[34] D. Alvarez-Melis and T. S. Jaakkola, “On the robustness of interpretability
methods,” arXiv:1806.08049 [cs.LG], 2018.

[35] D. Alvarez-Melis and T. Jaakkola, “Towards robust interpretability with
self-explaining neural networks,” in NeurIPS 31, 2018, pp. 7775–7784.

[36] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting performance
data with papi-c,” in Tools for High Performance Computing, 2010, pp.
157–173.

[37] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[38] A. Kunen, T. Bailey, and P. Brown, “Kripke-a massively parallel transport
mini-app,” Lawrence Livermore National Laboratory, Tech. Rep., 2015.

[39] B. Sjogreen, “SW4 final report for iCOE,” Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, Tech. Rep., 2018.

[40] The MIMD Lattice Computation (MILC) Collaboration, “MILC bench-
mark application,” http://www.physics.utah.edu/∼detar/milc/, 2016.

[41] E. Ates, O. Tuncer, A. Turk, V. J. Leung, J. Brandt, M. Egele, and A. K.
Coskun, “Artifact for Taxonomist: Application Detection through Rich
Monitoring Data,” https://doi.org/10.6084/m9.figshare.6384248.v1, Aug
2018.

[42] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of Computational Physics, vol. 117, p. 1–19, 1995.

[43] J. Kim, A. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A.
Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, and
et al., “Qmcpack: An open source ab initio quantum monte carlo package
for the electronic structure of atoms, molecules, and solids,” Journal of
Physics: Condensed Matter, vol. 30, no. 19, p. 195901, May 2018.

[44] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann,
“Hacc: Extreme scaling and performance across diverse architectures,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–10.

[45] J. Dongarra, M. A. Heroux, and P. Luszczek, “A new metric for ranking
high-performance computing systems,” National Science Review, vol. 3,
no. 1, p. 30–35, Mar 2016.

[46] N. Ghouaiel, P.-F. Marteau, and M. Dupont, “Continuous pattern detection
and recognition in stream - a benchmark for online gesture recognition,”
International Journal of Applied Pattern Recognition, vol. 4, no. 2, 2017.

[47] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and D. Tiwari,
“Machine learning models for GPU error prediction in a large scale HPC
system,” in IEEE/IFIP International Conference on Dependable Systems
and Networks, 2018, pp. 95–106.

