Version Detection for Software Discovery in the Cloud

Sadie L. Allen Anthony Byrne Ayse K. Coskun
sadiela@bu.edu abyrne19@bu.edu acoskun@bu.edu
Boston University Boston University Boston University
Boston, MA Boston, MA Boston, MA
Abstract application. In our experiments, we find that our best algorithm

With the growth in server traffic and component diversity in
cloud systems, administrators face the increasingly onerous
task of monitoring system activity. Failure to keep track of
the contents of virtual servers can limit overall efficiency and
create security risks for users. Prior work in software discovery
attempted to address this problem by identifying applications
based on file system activity. While some of these methods
have claimed to be extensible to detection of specific versions
of an application, version detection has yet to be demonstrated.
In this paper, we propose version detection algorithms that oper-
ate on top of Praxi, an existing open-source software discovery
tool. These algorithms introduce a rule-based component to dif-
ferentiate between versions, whose file system footprints can
appear very similar. We find that our best method achieves up
t0 99.9% accuracy in version detection experiments compared
to Praxi’s original 94% accuracy, albeit at the cost of increased
runtime. This work confirms the feasibility of version detec-
tion in software discovery and provides a starting point for
implementing this feature in software discovery tools.

1 Introduction

Current trends in cloud computing, such as continuous inte-
gration and delivery (CI/CD) and a move towards open-source
software, have expedited software release cycles and led to
much more diversity in the software components found in the
typical cloud system. With this diversification comes the prob-
lem of keeping track of the contents of the multitude of VMs
and containers in the cloud — a task essential to ensuring the
compliance, security, and efficiency of cloud applications. As
a solution to this problem, software discovery methods attempt
to continuously identify the software present on a given system.
Version detection in software discovery — i.e., identifying the
specific version of a given application installed — is vital for
rapid location and patching of vulnerabilities. If a vulnerability
is reported in a certain application, system administrators
would ideally know not only if the application is installed, but
also if the vulnerable version is installed in a particular VM or
container, in order to avoid wasting time patching unaffected
or irrelevant systems. Version detection allows for problematic
software to be pinpointed more quickly, limiting the window
of time during which a system is vulnerable.

Some prior efforts in software discovery have claimed
to be extendable to version detection [1, 3], but none have
actually demonstrated such a capability. We propose two
version detection algorithms built upon Praxi, an open-source
software discovery tool that uses machine learning to identify
applications based on file system changes [1]. Our new
methods use Praxi to identify applications and then use rules
based on file paths to distinguish between versions of a given

is able to detect application versions with up to 99.9%
accuracy, but takes 5.2x longer than the original Praxi method.

2 Background: Praxi

Praxi is a machine-learning based software discovery method
that serves as the basis of comparison for our study and a
building block for our novel algorithms. Praxi trains with
changesets, which are recordings of all filesystem changes
during a given period of time. To create examples of specific
applications, changesets are recorded during application
installations. Praxi uses Columbus [3], a tool for tokenizing
a list of file paths and indexing them into a frequency trie', to
reduce changesets down to a set of fags. The tags represent the
most-frequent longest-common-prefixes among the filesystem
tree tokens in each changeset. The top k tags are selected
(k chosen heuristically) to form a fagset containing the tags
occurring most frequently in all of the files created during a
specific application’s installation.

Once the training data has been reduced to tagsets, Praxi
generates a trained classifier using the machine learning
engine Vowpal Wabbit (VW) [2]. Tagsets are treated as "bags
of words" and VW generates a single multi-class classifier for
all single-label changesets in the corpus.

3 Proposed Version Detection Methods
3.1 A Robust Version Discovery Method

Our novel algorithms use Praxi to determine a changeset’s
application, and then employ rules to differentiate between spe-
cific versions of that application. Rules are file paths common
to a specific software installation and are triggered when they
are detected in a changeset. We keep two central properties
in mind when devising rule creation methods: uniqueness and
ubiquity. Each application version’s rule should be unigue to
that individual version such that the rule does not apply to any
other versions of the given application. Conversely, a rule for
a version should be ubiquitous such that it always applies to
every example of a given application version.

Both of our novel algorithms begin with a group of training
changesets labeled with application names and versions.
First, we train Praxi to recognize generally any version of
a given application. Second, we create application-specific
version rules. In the rule generation step, changesets are
separated into groups by application name, and rules only
need to differentiate between the individual versions of a
single application. We implement two rule generation methods
described in the following sections.

! A frequency trie is an extension of the information retrieval data structure,
the trie. The structure is described in detail by Nadgowda et al. [3].




3.1.1 Basic Rules

Our basic rule creation algorithm assumes that a version of an
application has at least one file that is unique to it and appears
in every changeset example. We achieve this by taking the
union of all changesets of a specific version, i.e., the set of all
file paths that appear in every example of a given application
version. The next step is finding any overlapping file paths
between these unions and removing them. Any file path
appearing in more than one of the unions cannot function
as a rule, as it would cause the rule to violate the ubiquity
principle mentioned above. Finally, we find the intersection
of all changesets for a version, and all of the file paths in that
intersection become the rules for that version.

3.1.2 Combination Rules

In the combination (combo) rules class, we consider additional
file metadata when generating our mappings between file
paths and rules, creating more sophisticated rules compared
to those generated by our basic algorithm. Specifically, a file
path can be used to differentiate between two versions and
the absence of a file can be used as a rule. As in the basic rule
generation, rules need only be created to distinguish between
versions of a given application, as Praxi is used to classify
changesets by application.

Three different types of rules are created for each version (as-
sume rules are currently being generated for version <label>):
<token>, ‘unique to’, <index>: Indicates that

the file path <token> appears in <index> different

labels. So, if <index> is 1, this file path is
unique to <label>.

<token>, ‘inside vs’, <other label>: Indicates
that <token> is found in <label> but not in
<other_label>. Thus, the presence of a specific
file can serve to differentiate between two version
labels.

<token>, ‘outside vs’, <other_ label>:
Indicates that <token> is found in <other_label>
but not in <label>. This can be used in the same way
as the second type of rule.

The output of the rule generation script is a mapping from

labels to sets of these rules. These mappings are used to make

version classification decisions in the evaluation phase.

We also attempt to mitigate the issue of versions of the same
application having similar file paths by appending file sizes to
the ends of file paths listed in the changesets. We evaluate this
mitigation on our basic and combo rule generation algorithms
and compare the classification accuracy to that of our original
methods.

3.2 Praxifor Version Detection

In order to provide a baseline for our experiments, we extend
Praxi to support version detection by changing its input data
and formatting. In Byrne et al.’s original experiments with
Praxi, changesets for just one application version are recorded
and then labeled with the name of that application [1]. In
our experiments, we record changesets for several different
versions of each application and label them with both the ap-
plication name and version number, concatenated into a single
string. Praxi’s original algorithm can then be applied normally.

= F1 Score = Precision = Recall

nunn

praxi basic combo basic_fsize combo_fsize

[&2]

Algorithm

Figure 1: The accuracy results for version detection experiments

4 Results

4.1 Comparison of Accuracy and Overhead

In our experiments, in which we attempted to classify the
application and version of 14,000 changesets of Ubuntu’s top
100 most popular non-library packages, the basic rule-based
algorithm with file size is able to detect specific versions of our
applications with the best accuracy, achieving an F1 score of
0.999. Praxi itself achieved an F1 score of just 0.941 by com-
parison. See Figure | for comparison with other algorithms.

Although Praxi does not yield the best accuracy of the
algorithms that we tested, it is the best in terms of running
time, as the other methods that we tested ran 5.2 times slower.
More experiments regarding how the running time overhead
scales are necessary to understand the extent to which our
rule-based methods are worse.

4.2 Case Study: OpenSSL

To show the value of version detection in software discovery,
we demonstrate its functionality in a situation with a real,
known vulnerability. Specifically, we tested whether two of
our methods, Praxi and the basic rule-based algorithm with file
size, could identify a version of OpenSSL with the Heartbleed
bug. For these experiments, we recorded 30 changesets of
two versions of OpenSSL—one with and one without the bug—
and chose changesets from five other applications from the
main experiments at random and ran the algorithms on this
corpus to show they could accurately distinguish the OpenSSL
application from others.

In this case study, Praxi achieves an F1 score of 0.936 while
the basic rule based algorithm with file size has an F1 score of
0.999. This demonstrates that the algorithms can successfully
identify a vulnerable application version.

References

[1] A. Byrne, E. Ates, A. Turk, V. Pchelin, S. Duri, S. Nadgowda, C. Isci,
and A. Coskun. Praxi: Cloud Software Discovery That Learns From
Practice. IEEE Transactions on Cloud Computing, PP:1-1, 2 2020.
do1:10.1109/TCC.2020.2975439.

[2] J.Langford, L. Li, and A. Strehl. Vowpal wabbit: Online learning project,
2007. URL: http://hunch.net/~vw/.

[3] S. Nadgowda, S. Duri, C. Isci, and V. Mann. Columbus: Filesystem
tree introspection for software discovery. In 2017 IEEE International
Conference on Cloud Engineering (IC2E), pages 67-74, Apr. 2017.

doi:10.1109/IC2E.2017.14.


https://doi.org/10.1109/TCC.2020.2975439
http://hunch.net/~vw/
https://doi.org/10.1109/IC2E.2017.14

	Introduction
	Background: Praxi
	Proposed Version Detection Methods
	A Robust Version Discovery Method
	Basic Rules
	Combination Rules

	Praxi for Version Detection

	Results
	Comparison of Accuracy and Overhead
	Case Study: OpenSSL


